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ARTICLE

Sparse modeling of interactions enables
fast detection of genome-wide epistasis
in biobank-scale studies
Julian Stamp,1,* Samuel Pattillo Smith,2,3,6 Daniel Weinreich,1,4 and Lorin Crawford5,*

Summary

The lack of computational methods capable of detecting epistasis in biobanks has led to uncertainty about the role of non-additive
genetic effects on complex trait variation. The marginal epistasis framework is a powerful approach because it estimates the likelihood
of a SNP being involved in any interaction, thereby reducing the multiple testing burden. Current implementations of this approach
have failed to scale genome wide in large human studies. To address this, we present the sparse marginal epistasis (SME) test, which
concentrates the scans for epistasis to regions of the genome that have known functional enrichment for a quantitative trait of interest.
By leveraging the sparse nature of this modeling setup, we develop a statistical algorithm that allows SME to run 10–90 times faster
than state-of-the-art epistatic mapping methods. In a study of complex traits measured in 349,411 individuals from the UK Biobank,
we show that reducing searches of epistasis to variants in functionally enriched regions facilitates the identification of genetic inter-
actions associated with regulatory genomic elements.

Introduction

Genome-wide association studies (GWASs) have identi-
fied thousands of genetic loci linked with various complex
traits and common diseases, offering valuable insights
into the genetic foundations of phenotypic variation.1

As of late, there have been many efforts to estimate pro-
portions of genetic variance beyond what is attributable
to additive effects.2–6 Epistasis, which refers to interac-
tions between genetic loci, is thought to play a key role
in constituting the genetic basis of evolution.7,8 While
many studies have shown epistasis to be pervasive in
model organisms,9–11 controversies remain with respect
to its role in humans.12 For example, some epistatic inter-
actions identified in association mapping studies can be
explained by additive effects of unobserved variants.13

Though previous studies have shown that genetic vari-
ance is mainly additive,9,14 these conclusions have
recently been challenged.5

Numerous statistical methods have been developed to
identify single-nucleotide polymorphisms (SNPs) that
contribute to epistasis. Traditional approaches focus on
explicitly detecting significant interactions through
exhaustive or probabilistic searches utilizing frequentist
tests, Bayesian inference, and machine learning tech-
niques.15–18 With advancements in sequencing technolo-
gies, many contemporary GWASs are conducted on bio-
bank-scale datasets comprising hundreds of thousands
of individuals genotyped at millions of markers and phe-
notyped for thousands of traits.1,19,20 This is crucial, as

the effect of epistatic interactions is hypothesized to be
small for many traits,12,14 and traditional search algo-
rithms are known to be most powered when large training
datasets are available.14,15 However, despite efficient
computational improvements, exploring large combina-
torial domains continues to pose a challenge for epistatic
mapping studies. With a lack of a priori knowledge about
which epistatic loci to prioritize, exploring all possible
combinations of genetic variants can result in low statisti-
cal power after correcting for multiple hypothesis tests
(e.g., there are J choose 2 possible pairwise combinations
for a study with J SNPs).
As an alternative to traditional exhaustive search

methods, the marginal epistasis framework was developed
to estimate the combined pairwise interaction effects be-
tween a focal SNP and all other variants in the dataset.
The “marginal epistasis test” (MAPIT) evaluates each SNP
individually and identifies candidates involved in epis-
tasis without requiring the identification of their exact in-
teracting partners.2 Recently, the concept of marginal
epistasis has been leveraged to estimate the contribution
of non-additive heritability in complex traits using
GWAS summary statistics.5 It has also been extended
to explore the importance of genetic interactions across
multiple traits simultaneously.3 Theoretically, MAPIT
is formulated as a linear mixed model where the
random effects and corresponding variance components
are estimated using a method-of-moments (MoM) algo-
rithm.21,22 Although MAPIT mitigates the reduction of
-power due to the multiple testing burden, its
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implementation on datasets with large sample sizes re-
mains computationally intensive.2 Specifically, the
computational complexity scales linearly with the num-
ber of SNPs and (at best) quadratically with the number
of individuals, making it suitable for moderately sized
GWAS applications but infeasible for biobank-scale
studies.23,24 Efforts have been made to address this limita-
tion, such as the “fast marginal epistasis test” (FAME),4

which leverages a stochastic MoM framework and intro-
duces both computationally efficient stochastic trace esti-
mators25 and innovative methods to expedite matrix
multiplication.26 However, despite these advancements,
further work is necessary to scale the method to
genome-wide applications.
This work introduces the sparse marginal epistasis

(SME) test, which focuses on searching for epistasis in re-
gions of the genomewith known functional enrichment27

related to a quantitative trait of interest. This method has
twomain advantages. First, it prioritizes candidate regions
likely to involve epistatic gene action. Studies have indi-
cated that variants in coding regions account for less
than 10% of the phenotypic variance in many traits and
diseases.28 Consequently, the remaining heritability is
attributed to regions expected to play a regulatory
role27–29 and that are active in trait-specific tissue.30,31 Sec-
ond, the sparse nature of this approach leads to more effi-
cient estimators for model parameters22,32 and allows SME
to operate significantly faster than existing methods, such
as MAPIT and FAME. Through detailed simulations, SME
demonstrates effective type I error control and improved
power compared to previous approaches. Furthermore,
utilizing information from DNase I-hypersensitivity sites
in ex vivo human erythroid differentiation33 and GWAS
summary statistics, we use SME to analyze complex traits
in individuals from the UK Biobank19 and identify genetic
interactions associated with regulatory genomic elements.

Material and methods

The SME test
The SME test performs a genome-wide search for SNPs involved in
genetic interactions while conditioning on information derived
from functional genomic data (Figure 1A). Consider a GWAS
with N individuals who have been genotyped for J SNPs encoded
as {0;1;2} copies of a reference allele at each locus. Also assume
that we have access to an external reference S that encodes
some additional biological information about the quantitative
trait being studied. The marginal epistasis test aims to identify ge-
netic variants that are involved in epistasis without exhaustively
searching over all possible interactions.2 By examining one SNP
at a time (indexed by j), SME fits the following linear mixed
model:

y = μ+
∑

l

xlβl+
∑

l∕=j

(
xj ∘ xl

)
αl ⋅ 1S(wl) + ε; ε ∼N

(
0; τ2I

)

(Equation 1)

where y is an N-dimensional quantitative trait vector measured
for each individual in the study; μ is an intercept term; X is the

N × J matrix of allele counts that have been column standardized
across individuals with xl representing an N-dimensional vector
for the l-th SNP; βl is the additive effect for the l-th SNP; xj∘xl is
the Hadamard (elementwise) product of the two genotypic vec-
tors with corresponding interaction effect size αl; ε is a normally
distributed error term with mean zero and scale variance term τ2;
and I denotes an N ×N identity matrix. The key to this formula-
tion is that the inclusion of the interaction between the j-th and
l-th SNPs is based on an indicator function

1S(wl) =

{
1 if wl ∈ S
0 if wl ∕∈ S ; (Equation 2)

where wl encodes information about the l-th SNP. For example, if
testing for epistatic effects in red blood cell traits, we can incorpo-
rate information about regulatory regions during erythroid differ-
entiation into the model (Figure 1B). In this case, S could be a set
of genomic regions for which DNase sequencing (DNase-seq) im-
plicates chromatin accessibility and wl could encode the physical
location of the l-th SNP on the genome. Here, 1S(wl) = 1 if the
l-th SNP is located in one of these regions (i.e., wl ∈ S). This
means that while all SNPs are tested for marginal epistasis, only
their interactions with SNPs included in the mask resulting
from Equation 2 are considered.
The benefits of this sparse approach are 2-fold. First, by limiting

the search to regions of the genome that are most likely to be
functionally associated with a phenotype, SME produces signifi-
cantly more efficient estimators, which leads to an increase in po-
wer (Figure 1C). Second, by masking out sets of variants for each
test on a focal SNP, SME leverages a fast MoM algorithm to sub-
stantially improve its scalability for genome-wide analyses
(Figure 1D). Specifically, SME introduces an approximation to
the efficient stochastic trace estimator,4,23,25,34 which allows the
algorithm to avoid repeating costly matrix computations when
estimating model parameters across each SNP that is being tested
(Figures S1–S3).

Variance component model formulation
For biobank-scale data, there are often more SNPs than individ-
uals. To overcome an undetermined system in Equation 1, the
marginal epistasis framework assumes that the effect sizes follow
univariate normal distributions where βl ∼N(0;ω2 =J) and
αl ∼N(0; σ2 =J∗), with J∗ =

∑
l∕=j1S(wl) representing the number

of interactions considered in the model.2,32,35–37 Assuming that
the phenotype has been mean centered and scaled, these normal
assumptions allow Equation 1 to be rewritten as

y = m+gj + ε ε ∼N
(
0; τ2I

)
; (Equation 3)

wherem =
∑

lxlβl is the combined additive effects from all SNPs
and gj =

∑
l∕=j(xj ∘xl)αl⋅1S(wl) represents the effects of a subset of

pairwise interactions involving the j-th SNP.
Probabilistically, Equation 3 translates to SME assuming that

m ∼N(0; ω2K), where the covariance matrix K = XX⊺=J ac-
counts for the relatedness between individuals in the data and
the corresponding component ω2 models the phenotypic vari-
ance explained (PVE) by additive effects. The second term can
be written as gj ∼N(0; σ2Gj), where Gj = DjX− jWjX

⊺
− jDj=J

∗,
with X− j denoting the genotype matrix without the j-th SNP
andDj = diag(xj) representing anN ×N diagonalmatrix. Impor-
tantly, Wj = diag[1S(w1);…;1S(wJ − 1)] has binary diagonal ele-
ments that only equate to 1 if the l-th SNP satisfies the criteria
from the external data source S. Altogether, these results show
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that the covariance matrix Gj represents all pairwise interactions
involving the j-th SNP that have not been masked out according
to the set of indicator functions {1S(wl)}l∕=j. The main takeaway
from the variance component formulation of SME is that the
term σ2 measures SNP-specific contribution to the non-additive
genetic variance.

Point estimates and hypothesis testing
The model in Equation 3 has three variance components that can
be estimated using a computationally efficient MoM algorithm.22

In expectation,

𝔼[y⊺Ay] =
∑3

k=1

tr
(
AΣjk

)
δk; (Equation 4)

with A being a symmetric and non-negative definite matrix
used to create weighted second moments, tr( ⋅) denotes the
trace of a matrix, and we use shorthand to represent
[Σj1; Σj2; Σj3] = [K; Gj; I] and δ = (ω2;σ2;τ2), respectively. In prac-
tice, we replace the left-hand side of Equation 4 with the realized
value y⊺Ay. We also use the realized covariance matrices in place
of the arbitrary A. The point estimates for each variance compo-
nent are then given as

δ̂jk = y⊺Hjky; (Equation 5)

where Hjk =
∑3

t =1 (S
− 1
j )ktΣjt and Sj is a 3× 3 matrix with ele-

ments (Sj)kt = tr(ΣjkΣjt).
SME tests for non-zero marginal epistasis using a one-sided Z

score or normal test. This is equivalent to assessing the null hy-
pothesisH0 : σ2 = 0 for each SNP in the data. We derive a test sta-
tistic with the estimate σ̂2

j using Equation 5 and compute an
approximate standard error

𝕍
[

σ̂2
j

]
≈ 2y⊺H

⊺
j VjHjy; (Equation 6)

where Vj = ω̂2
j K+ σ̂2

j Gj + τ̂2
j I. Note that the point estimates

from Equations 4 and 5 are unbiased and can lead to negative
values when the true variance component is zero.22 The one-
sided hypothesis test formalizes the constraint that only positive
estimates of σ̂2

j can be indicative of marginal epistasis.

Scalable computation via stochastic MoM
The right-hand side of Equation 5 involves computing traces of
matrix products. If each covariance matrix is held in memory,
then this can be done efficiently (without matrix multiplication)

A

DC

B

Figure 1. Schematic overview of the sparse marginal epistasis test
(A) Sparse marginal epistasis (SME) examines one SNP at a time and estimates marginal epistatic effects—the combined pairwise inter-
action effects between a j-th focal SNP and other variants on the genome (indexed by l∕= j). The key to SME is that it incorporates
genomic data S through a binary indicator function 1S(wl), wherewl provides information about the l-th background SNP. This creates
a mask to only search for interactions in regions of the genome with known functional enrichment related to a trait of interest.
(B) As an example, let data on DNase I-hypersensitive sites (DHS) be used for S. In this case, SME restricts the marginal epistasis test to
assessing interactions between each focal SNP and variants with genomic coordinates that fall within open chromatin and regulatory
regions. The DNase-seq signal is converted into a binary mask, excluding variants located in regions with closed chromatin (i.e., var-
iants with coordinates wl ∕∈ S).
(C) SME tests every SNP genome wide. Masking results in improved power to detect marginally epistatic variants versus the traditional
non-masking approach.
(D) SME uses computationally efficient estimators to enable genome-wide testing on biobank-scale datasets. It achieves runtimes 10×
–90× faster than current state-of-the-art methods.
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using the Frobenius inner product. However, holding large
covariance matrices in memory itself prevents scalability of the
method. Naively multiplying two N × N matrices requires N3

field operations. This too can be impractical for biobank-scale
data with large sample sizes. To enable genome-wide testing,
SMEmakes use of a stochastic MoM approach through the imple-
mentation of Hutchinson’s stochastic trace estimator and the
Mailman algorithm. The stochastic trace implementation enables
block-wise processing of genotype data. With this approach, SME
computes the traces of all covariance matrix products without
ever needing to explicitly estimate the covariance matrices them-
selves. By making the block size (i.e., the number of SNPs pro-
cessed simultaneously) configurable, the computation can be per-
formed using as little as 1 gigabyte (GB) of read access memory
(RAM).
Hutchinson’s stochastic trace estimator
Hutchinson’s stochastic trace estimator approximates the trace of
a matrix product via the following4,23,25,34:

tr
(
ΣjrΣjs

)
≈ 1

B

∑B

b=1

z
⊺
bΣjrΣjszb; (Equation 7)

where zb ∼N(0; I) is a normally distributed vector and B is the
number of random draws used to approximate the trace. This
operation only depends on a series of matrix-by-vector products
and has time complexity O(BNJ). Essentially, we choose an order
of operations such that computing the quadratic forms
zT

b XX⊺XX⊺zb = ‖XX⊺zb‖
2 is reduced by (1) applying X⊺ to the

vector zb and then (2) applying X to the resulting vector X⊺zb

for all B random vectors. Importantly, Equation 7 can be set up
algorithmically such that the approximation is done block-wise
over the individual-level genotype data. Using this approach,
SME avoids having to compute any of the covariance matrices
directly and alleviates the need to load the entire genotypematrix
into memory all at once.
The Mailman algorithm
An additional computational speedup can be achieved bymaking
use of the discrete encoding for each SNP. The Mailman algo-
rithm allows for an N × J matrix to be multiplied by any real vec-
tor inO(NJ =logΩ(max{N; J} ) ) time if it has elements defined over
a finite alphabet size Ω.4,23,26,34 A standardized genotype matrix
can be written as X = (A − U)Q − 1, where A is an N× J allele
count matrix with elements aij ∈ {0;1;2} over finite size Ω =

3, U = [u1;…;uJ ] is a matrix where the j-th column contains
the sample mean for the j-th SNP and the variance of each SNP
as the diagonal entries. With this specification, we can write
X⊺zb = Q − 1(A⊺ − U⊺)zb. The first term, Q − 1A⊺zb, can be solved
in O(NJ =log3(max{N; J} ) ) time. The second term, Q − 1U⊺zb, cor-
responds to scaling the random N-dimensional vector zb, which
can be computed in time O(N+J).4,23,34

Shared random vectors and parallelization
With the stochastic trace estimator and the Mailman algo-
rithm, it is feasible to estimate the variance components for
each focal SNP even when a study has a large number of indi-
viduals. Still, testing every focal SNP against all variants
genome wide remains a challenge. In SME, we propose
randomly selecting subsets of focal SNPs and having them
share the same random vectors zb when performing the sto-
chastic trace estimation. This limits the number of computa-
tions that need to be performed while maintaining unbiased-
ness in the point estimates (Figure S4).
Since the error terms in Equation 3 are assumed to be indepen-

dent, the only two intermediate products that need to be

computed in Equation 7 are Kzb and Gjzb. With these
terms, we can compute all combinations of traces of matrix prod-
ucts that are required to fit SME (e.g., tr(K2) ≈ ‖Kzb‖

2 and
tr(KGj) ≈ z

⊺
b
KGjzb). For a subset of L focal SNPs and fixed zb,

the term Kzb is constant, and only Gjzb changes. This reduces
the effective time needed to compute Kzb per test by a factor of
1=L. Figure S1 illustrates the idea of sharing random vectors.
As previously mentioned, reading biobank-scale genotype data

into memory requires non-negligible overhead. The R implemen-
tation of SME reads in genotypes once for each subset of focal
SNPs that share the same random vectors (web resources). The
computation of Kzb and each Gjzb can then be done in parallel
using multithreading. While sharing random vectors helps accel-
erate this task, it also requires storing larger quantities of interme-
diate results in memory.
Masking further reduces the effective size of data
A direct benefit of masking is that it is equivalent to removing
entire columns from the genotype matrix. This reduction con-
tributes to a significantly faster runtime when computing Gjzb

(e.g., Figures S2 and S3). Concretely, applying a mask to an
N × J genotype matrix reduces the number of columns to
J∗ ≤ J. If the mask is sparse enough such that J∗ ≤ N, the time
complexity of the Mailman algorithm is also reduced to
O(BNJ∗ =log3(N) ).

Preprocessing the UK Biobank
Genotype data for 488,377 individuals in the UK Biobank were
downloaded and converted using the ukbgene and ukbconv

tools, respectively. Continuous traits were also downloaded using
the ukbgene tool and were adjusted for age and sex. Individuals
identified as having high heterozygosity, excessive relatedness, or
aneuploidy were removed (1,550 individuals). After separating
individuals into self-identified ancestral cohorts using data field
21000, unrelated individuals were selected by randomly
choosing one person from each related pair. This resulted in
N = 349,411White British individuals to be included in our anal-
ysis. We downloaded imputed SNP data from the UK Biobank for
all remaining individuals and removed SNPs with an information
score below 0.8. Information scores for each SNP are provided by
the UK Biobank (web resources).
Quality control for the remaining genotyped and imputed

1,933,118 variants was then performed on each cohort separately
using the following steps. All structural variants were first
removed, leaving only SNPs in the genotype data. Next, all AT/
CG SNPs were removed to avoid possible confounding due to
sequencing errors. Then, SNPs with a minor-allele frequency
less than 1% were removed using the PLINK 2.038 command
–maf 0.01. We then removed all SNPs found to be out of
Hardy-Weinberg equilibrium, using the PLINK –hwe 0.000001

flag to remove all SNPs with a Fisher’s exact test p < 10− 6. Finally,
SNPs with any missingness were removed using the PLINK 2.0

–geno 0.00 flag. This left a total of J = 543,813 SNPs for our
study.
Assessing replicability and robustness of the study
To confirm that the marginal epistatic signal identified by SME in
the UK Biobank is robust to sample composition, we randomly
split the data into two distinct subsets of equal size. This resulted
in two cohorts with N = 174,705 individuals and J = 543,813
SNPs. Additionally, we assessed the scale invariance of the signal
identified by SME. Here, we reran the analysis for all significant
marginal epistatic associations using quantile-normalized
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versions of each trait. The quantile normalization was performed
using the qqnorm function in R.

GWAS summary statistics
The summary statistics used to compare against marginal
epistatic results for each trait in the UK Biobank were downloaded
(web resources). These summary statistics were first filtered to
match the same set of SNPs that passed our quality control.
SNPs that were reported as being associated with a trait at
genome-wide significance (p < 5×10− 8) in the UK Biobank Eu-
ropean cohort are highlighted in our analyses.

Generating masks from external data sources
Below is a description of the datasets that we used to generate the
masks for SMEwhen analyzing individuals and quantitative traits
from the UK Biobank.
Masks using DNase I-hypersensitive sites
The chromatin accessibility-based masks were derived from
DNase I-hypersensitive sites (DHSs) measured over 12 days of
ex vivo erythroid differentiation.33 The DHS intervals were re-
ported using the hg38 human reference genome. To map corre-
spondence to the UK Biobank data (which use the hg19 as refer-
ence), we performed a lift over using CrossMap.39 We mapped
each SNP in the UK Biobank to the genomic intervals in the
DHS data using the R software package GenomicRanges.40 The
resulting mask comprised J∗ = 4,952 SNPs.
Masks using GWAS summary statistics
Many complex traits have genetic signatures that are not tissue
specific, and in many cases, biologically informative annotations
from external functional studies may not be available. As a more
general strategy, in the absence of trait-specific biological infor-
mation, we induce sparsity within the SME framework using
GWAS summary statistics. The motivation behind this approach
is 2-fold. First, variant-level associations from genome-wide
studies can serve as proxies for more targeted, biologically
informed priors. For example, genomic regions identified by
DNase-seq have been shown to be enriched for non-coding vari-
ants associated with common diseases and complex traits.27 Sec-
ond, GWAS summary statistics have been suggested to tag non-
additive genetic effects contributing to trait architecture.5 In
practice, this results in masks of varying degrees of
sparsity and mask sizes (using a genome-wide significance
threshold p < 5× 10− 8). In our quality-controlled data from the
UK Biobank, J∗ = 16,142 SNPs are associated with body height,
J∗ = 7,778 SNPs are associated with mean corpuscular hemoglo-
bin (MCH), J∗ = 3,536 SNPs are associated with uric acid
(or urate), and J∗ = 547 SNPs are associated with vitamin D
levels (VITDs). To match the sparsity observed in DNase
I-hypersensitivity data, we select the top 5,000 SNPs ranked by
strength of association (lowest p values) for height and MCH
and include all significant SNPs for urate and VITDs.
Small note on linkage disequilibrium blocks
To control the type I error rate, variants in the same linkage
disequilibrium (LD) block as the j-th focal SNP are also masked.
The LD blocks used for this study were approximately indepen-
dent and derived using European individuals.41

Simulation studies
To characterize the behavior of the SME test, we generate quanti-
tative traits using chromosome 1 of theWhite British cohort from
the UK Biobank.2,3,5 These data consisted ofN = 349,411 individ-

uals and J = 43,332 SNPs. Here, we sample 10% of the SNPs in the
data to be causal and simulate traits using the following linear
model:

y =
∑

a∈A
xaβa +

∑

g1 ∈G1

∑

g2 ∈G2

(
xg1

∘ xg2

)
αg1g2

+ ε; ε ∼N
(
0; λ2I

)
;

(Equation 8)

where y is an N-dimensional phenotype vector; A represents the
set of causal SNPs with additive effects; xa is the genotype for the
a-th causal SNP, which has been standardized to have mean zero
and variance one across individuals; βa is the additive effect sizes
for the a-th SNP; both G1 and G2 are sets of epistatic SNPs that are
non-overlapping subsets of A; αg1g2

is the interaction effect sizes
between xg1

and xg2
; and ε is a vector of normally distributed

environmental noise. We sample the effect sizes from standard
normal distributions and rescale them so that the additive and
epistatic effects explain a desired proportion of the trait variance.
Specifically, the additive and epistatic variance components
make up the broad-sense heritability of the trait H2 = h2

A + h2
G.

Similarly, the environmental noise matrix is also rescaled, such
that it explains the remaining 1 − H2 proportion of the trait
variance.
In this simulation design, the epistatic causal SNPs interact be-

tween sets. All SNPs in G1 interact with all SNPs in G2 but do not
interact with variants in their own group (and vice versa). Note
that we use this setup because the ability to detect interacting var-
iants in the marginal epistasis framework depends on the propor-
tion of phenotypic variance that theymarginally explain. The pa-
rameters that determine the PVE by a single SNP are the epistatic
heritability h2

G and the cardinality of the set to which the SNP be-
longs. For example, an SNP in G1 will explain, on average, h2

G=|G1|

of the total phenotypic variance.
To simulate masks, we select some proportion of the non-

epistatic SNPs to zero out of the interaction covariance matrix.
For example, when analyzing the j-th SNP, 95% masking corre-
sponds to excluding 41,165 out of the 43,332 SNPs when
computing Gj. Similarly, only 433 SNPs are used when using a
99% masking strategy. To create masks that induce “uniform
sparsity,” we randomly sample from all SNPs in the dataset
with uniform probability. In real data, masks are likely not
sampled uniformly. An obvious potential source of complication
for non-uniform masking can come from LD between SNPs.
Therefore, to simulate masks that induce “localized sparsity,”
we randomly sample a seed SNP and define a genomic window
around it. SNPs outside that window are then masked.
Unless otherwise specified, we used the following hyperpara-

meters when applying SME and FAME to the simulated data:
B = 100 random vectors for the stochastic trace estimator, and
we block-wise processed 100 SNPs at a time and shared random
vectors across L = 25 SNPs for the SME implementation. To
ensure fair comparisons between methods, all were applied to
the same SNPs, and synthetic traits within each simulation repli-
cate. Note that causal SNP sets varied across replicates due to
random sampling.

Software tools and data sources
Software for running the FAME is freely available at https://github.
com/sriramlab/FAME. The version of FAME that we implemented
for this work (GitHub commit hash prefix cfdd03f; date May 7,
2024) has been archived at https://doi.org/10.5281/zenodo.
14607997. The original MAPIT was implemented using the
mvmapit software package in R and is available both on CRAN
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(https://cran.r-project.org/package=mvMAPIT) and GitHub
(https://github.com/lcrawlab/mvMAPIT). All software for SME,
FAME, andMAPIT were fit using their default settings unless other-
wise stated in the main text. Data from the UK Biobank Resource
was made available under application number 14649 and can be
accessed by direct application to the UK Biobank. GWAS summary
statistics were downloaded from https://www.nealelab.is/uk-
biobank, and corresponding LD maps were taken from https://
bitbucket.org/nygcresearch/ldetect-data/. The DHS data are avail-
able at https://doi.org/10.5281/zenodo.5291736.We used Cross-
Map (https://crossmap.readthedocs.io/) and GenomicRanges

(https://doi.org/10.18129/B9.bioc.GenomicRanges) to map SNPs
from the UK Biobank to genomic intervals in the DHS data. The
chain file for the CrossMap liftover tool can be found at http://
hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/.

Results

SME scales to biobank GWASs
To compare the expected central processing unit (CPU)
computation for conducting a biobank-scale genome-
wide analysis using SME, FAME,4 and MAPIT,2 we
measured the average runtime per SNP for each method
on an Intel Xeon Platinum 8268 CPU using a single core
(i.e., no parallel processing). Here, we used genotype
data from 349,411 individuals of self-identified European
ancestry in the UK Biobank with 543,813 SNPs after qual-
ity control (material and methods). The memory require-
ments for MAPIT are prohibitively high, requiring re-
sources on the order of terabytes for biobank-scale

datasets with hundreds of thousands of observations. By
using Hutchinson’s stochastic trace estimator, both SME
and FAME achieve configurable resource requirements
and can effectively operate with only a few GB of memory
at biobank-scale data.
We find that SME performs genome-wide testing 10×

faster than FAME and 90× faster than MAPIT (Figure 2).
While analyzing the complete dataset with a single core,
SME requires only 3.7 days of runtime compared to
FAME and MAPIT, which require 38.4 and 324 days,
respectively. The greatest speedup in SME is achieved by
approximating the stochastic trace when estimating
model parameters (Figure S1). This allows for computa-
tions involving large genetic relatedness matrices to be
reused across multiple tests for different focal SNPs. Even
with the stochastic trace approximations, performing
matrix calculations at biobank scale still takes minutes.
However, the ability to share these computations across
multiple variants significantly reduces the overall compu-
tational burden (Figures S2 and S3). The proposed
approach enables SME to be effectively applied to the
UK Biobank, facilitating GWASs of epistasis. For the real
data application in this study, SME effectively computed
hundreds of tests simultaneously with less than 85 GB of
RAM for a dataset consisting of N = 349,411 individuals.

SME is a well-calibrated test and conserves type I
error rates
We generate synthetic phenotypes using a linear model
with real genotypes from chromosome 1 of White British
individuals in the UK Biobank.2,3,5 After quality control,
we had a dataset of 349,411 individuals and 43,332 SNPs
(material and methods). Under the null model, we simu-
late traits consisting of only additive effects. Here, we
randomly sample 10% of the SNPs and scale their effect
sizes such that they explain 40% of the total phenotypic
variance.
We simulate external data sources (S) to be used when

generating a mask for the marginal epistatic covariance
matrix Gj in SME. Recall that these external data sources
are intended to give alternative insight into the impor-
tance of SNPs and are used to induce sparsity in the
modeled gene interactions by dropping interactions
with “unimportant” variants. We consider two scenarios
in our simulations (Figure S5). In the first, SNPs deemed
important in the external data source are sparsely sampled
with uniform probability from all variants. As a result, the
modeled gene interactions are evenly distributed along
the chromosome. We will refer to this scenario as
inducing uniform sparsity in the SME model. In the sec-
ond scenario, we randomly sample one central seed SNP
and define variants in a block around it as important.
We will refer to this scenario as one that induces localized
sparsity. In these simulation experiments, we assess the
calibration of SME using both types of external data sour-
ces as a function of the percentage of total variants that are
masked (varying between 0%, 95%, and 99%) and the

Figure 2. Computational time for running SME and other
marginal epistatic approaches on biobank-scale data as a
function of the genome size
The other methods compared include FAME4 and MAPIT.2 Here,
we analyze genotype data from a fixed set of 349,411 individuals
from the UK Biobank and vary the genome size. All results were
computed on a single core of an Intel Xeon Platinum 8268 central
processing unit (CPU). Total runtime was calculated based on the
average runtime per SNP and parallel processing on a cluster with
960 CPUs available. Both SME and FAME were set to have the
same hyperparameter configurations (e.g., the number of random
vectors). SME also used a binary mask that contained 5,000 un-
masked SNPs, and its stochastic trace approximation was applied
such that sets of 250 focal SNPs shared the same random vectors.
MAPIT could not be directly compared due to its excessive mem-
ory requirements for datasets of this size. Instead, the runtime for
MAPIT was measured on smaller sample sizes (up to 20,000 indi-
viduals) and extrapolated to a sample size of 349,411 individuals.
This extrapolation assumed quadratic scaling with the number of
individuals and linear scaling with the number of SNPs.
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number of individuals being analyzed (varying between
20,000, 50,000, 100,000, and 300,000 randomly sub-
sampled individuals).
Under the null model, we find that SME produces well-

calibrated p values and unbiased variance component esti-
mates (Figure 3; Table S1) using a uniformly sparse mask.
Specifically, higher levels of sparsity lead to more accurate
estimates of the marginal epistatic variance components.
We also see the precision in its estimates improve as the
sample size increases, which is expected since SME uses a
normal test to compute p values for each SNP. Overall,
this translates to SME preserving empirical type I error
rates estimated at significance levels α = 0.05, 0.01, and
0.001, respectively (Table 1). In contrast, FAME produces
inflated test statistics as the number of samples in a dataset
grows. Note that we do not include a comparison with
MAPIT here due to its inability to scale to biobank settings
(see Crawford et al.2 for an assessment of its calibration on
small-to-moderately sized data).
Notably, using an external data source with a localized

sparse masking scheme introduces a slight negative bias
in variance component estimates produced by SME, lead-
ing to fewer significant p values and more conservative
inference (Figure S6). While type I error control remains
conservative (Table S2), this also means that the test
may have reduced power when traits are indeed simulated
under the alternative with non-zero epistatic effects. We
will explore this behavior further in the next section.

The masking strategy in SME leads to improved
power in simulations
To assess the power of SME, we again generate synthetic
continuous traits using real genotypes from chromosome
1 of White British individuals in the UK Biobank.2,3,5

These data were subsampled using sample sizes of

50,000, 100,000, and 300,000 individuals. Here, we as-
sume that 10% of all SNPs are causal and have additive ef-
fects that collectively explain 30% of the trait variance.
Next, we fix the epistatic contribution to the trait variance
to be 5%, making the total broad-sense heritability 35%.
We select a set of epistatic variants from the causal SNPs
and divide them into two equally sized groups. Each
SNP in one group is simulated such that they only interact
with SNPs in the other group. This simulation design gives
control over the epistatic PVE by the individual variants.
In this analysis, we select 10, 20, 50, and 100 of the causal
SNPs to be epistatic, which corresponds to per-SNP
epistatic PVE values equal to 1%, 0.5%, 0.2%, and 0.1%
of the trait variance.
Once again, we analyze SME using two different

external data source types that induce uniform and local-
ized sparsity—masking out 0%, 95%, and 99% of the
possible interactive partners when constructing the mar-
ginal epistatic covariance matrix Gj for each j-th focal
SNP being tested (Figure S5A). We compare the empirical
power of SME to FAME as a baseline by assessing the
respective abilities of both models to identify causal
epistatic SNPs at a genome-wide significance threshold
p < 5× 10− 8.42

We find that using the uniformly sparse masking
scheme significantly enhances the power of SME, with
greater levels of sparsity leading to better method perfor-
mance (Figure 4). When analyzing 300,000 individuals,
the 99%-masked SME identifies at least 85.1% of the
causal epistatic SNPs even when they contribute as little
as 0.1% to the trait variance. This is compared to FAME
and a non-masked SME, which only detect at most 1%
of causal SNPs with very small PVE. When epistatic vari-
ants have larger effect sizes and individually account for
1% of the trait variance, the 99%-masked SME shows

Figure 3. While using a mask that in-
duces uniform sparsity, SME is well
calibrated under the null hypothesis
and does not identify epistasis when
traits are generated by only additive
effects
Synthetic traits were simulated with only
additive effects using chromosome 1
from individuals of self-identified Euro-
pean ancestry in the UK Biobank. These
data were then subsampled using sample
sizes of 20,000, 50,000, and 100,000 indi-
viduals. We randomly selected 10% of all
variants to be causal with additive effects,
and we assume that they explain 40% of
the phenotypic variance for each trait.
Data were analyzed using both FAME (as
a baseline) and SME under varying per-
centages of SNPs that are masked (0%,
95%, and 99%, respectively). The small
insets in each plot show the distribution
of the estimated marginal epistatic vari-
ance components across all experiments.
For reference, under the null hypothesis
H0 : σ2 = 0. Results are based on 100
simulated traits per scenario.
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99.8% power even with relatively small sample sizes (e.g.,
50,000 individuals). Again, this is compared to FAME and
a non-masked SME, which each only have approximately
35% power in this scenario. To examine the sensitivity of
the SME to the specification of an external data source, we
conducted a simulation in which the model was provided
with a weight matrix that incorrectly masked true inter-
acting partners.5 Here, we observed that the SME frame-
work protects against the false discovery of non-additive
genetic effects and underestimates the marginal epistatic
variance component (σ2) when causal SNPs involved in
pairwise interactions were unobserved (Figure S7).
Similar to the null simulation study, we see that SME pro-

duces negatively biased variance component estimates
when using an external data source that induces localized
sparsity in themodel. Indeed, overconcentrating the search
for potential interacting pairs to a select number of corre-
lated variants leads to reduced empirical power compared
to the masking that results in uniform sparsity
(Figure S8). For example, when analyzing 300,000 individ-
uals, the localized 99%-masked SME has just 6.5% power to
identify epistatic variants that explain 0.1% of the trait
variance. To overcome this issue in practice, we propose a
strategy in which we take an external data source with
localized genomic information and randomly unmask

“unimportant” variants with uniform probability along
the genome (essentially making the localized sparsity
look more uniform, as shown in Figure S5B). As a demon-
stration of this idea, we implement a version of SME where
we include an additional 1% and 5%of initially disregarded
interactions back into the construction of Gj for each
j = 1;…; J tested focal SNPs in the dataset. We find that
adding this “noise” back into themask reduces the negative
bias of the variance component estimates and recovers as
much as 28% of the power that was lost with respect to
the uniformly sparse models (Figure S9). For future users
of the SME software, we want to note that there is likely
an application-specific trade-off between adding SNPs to a
mask to reduce potential bias and finding the degree of
sparsity needed for an optimally powered test.

SME uses chromatin information to identify epistasis
in hematology traits
We apply SME to four hematology traits—MCH, mean
corpuscular hemoglobin concentration (MCHC), mean
corpuscular volume (MCV), and hematocrit (HCT)—as-
sayed in 349,411 White British individuals in the UK Bio-
bank19 and genotyped at 543,813 SNPs genome wide. As
an external data source, we leverage DHS data measured
over 12 days of ex vivo erythroid differentiation.33 Of the

Table 1. While using a mask that induces uniform sparsity, SME controls type I error rates when synthetic traits are generated under the
null model

Method Sample size α = 0:05 α = 0:01 α = 0:001

FAME 20,000 0.0531 (0.0214) 0.0128 (0.0124) 0.0022 (0.0044)

FAME 50,000 0.0720 (0.0237) 0.0200 (0.0127) 0.0053 (0.0078)

FAME 100,000 0.1208 (0.0318) 0.0526 (0.0223) 0.0241 (0.0133)

SME (0% masked) 20,000 0.0379 (0.0185) 0.0056 (0.0074) 0.0001 (0.0010)

SME (0% masked) 50,000 0.0459 (0.0207) 0.0084 (0.0090) 0.0004 (0.0020)

SME (0% masked) 100,000 0.0492 (0.0217) 0.0085 (0.0090) 0.0007 (0.0029)

SME (0% masked) 300,000 0.0537 (0.0209) 0.0090 (0.0090) 0.0012 (0.0036)

SME (95% masked) 20,000 0.0359 (0.0163) 0.0046 (0.0061) 0.0005 (0.0022)

SME (95% masked) 50,000 0.0416 (0.0168) 0.0060 (0.0075) 0.0002 (0.0014)

SME (95% masked) 100,000 0.0445 (0.0197) 0.0078 (0.0080) 0.0004 (0.0020)

SME (95% masked) 300,000 0.0474 (0.0213) 0.0073 (0.0081) 0.0003 (0.0017)

SME (99% masked) 20,000 0.0310 (0.0147) 0.0029 (0.0052) 0.0000 (0.0000)

SME (99% masked) 50,000 0.0355 (0.0186) 0.0037 (0.0065) 0.0001 (0.0010)

SME (99% masked) 100,000 0.0387 (0.0178) 0.0042 (0.0062) 0.0001 (0.0010)

SME (99% masked) 300,000 0.0404 (0.0189) 0.0059 (0.0070) 0.0002 (0.0014)

Synthetic traits were simulated with only additive effects using chromosome 1 from individuals of self-identified European ancestry in the UK Biobank. These data
were then subsampled using sample sizes of 20,000, 50,000, 100,000, and 300,000 individuals. A total of 100 causal additive variants were randomly selected for
each trait, and their effects were assumed to explain 40% of the phenotypic variance. Data were analyzed using both FAME (as a baseline) and SME under varying
percentages of SNPs that are masked (0%, 95%, and 99%, respectively). Empirical size for the analyses used significance thresholds of α = 0.05, 0.01, and 0.001.
Values in the parentheses are the standard deviations of the estimates. Results are based on 100 simulations per scenario. Due to computational constraints, the
data with 300,000 individuals were only analyzed with SME.
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quality-controlled SNPs in our data, 4,932 of them are
located in DHS regions enriched for transcriptional activ-
ity.27 Since previous GWAS results have found genes asso-
ciated with MCH, MCHC, and MCV to also be implicated
in erythroid differentiation,43 we expect that condition-
ing SME to test over regulatory mechanisms gathered dur-
ing erythropoiesis will be helpful in identifying epistatic
variants for these traits. On the other hand, HCT is a
phenotype that measures the percentage of red blood cells
in an individual. Since the regulation for this trait has lit-
tle to do with DHS sites andmore to do with oxygen avail-
able in the blood,44 we would expect a mask derived from
functional data on erythropoiesis to not be helpful in
enabling SME to detect epistasis.
For each trait, we use Manhattan plots to visually

display the variant-level mapping results across each of
the four traits, where chromosomes are shown in alter-
nating colors for clarity (Figures 5 and S10–S12). Corre-
sponding genes that have SNPs with p values below the
genome-wide significance threshold to correct for multi-
ple testing (p < 5×10− 8) are also highlighted. Impor-
tantly, many of the marginal epistatic variants identified
by SME are supported by multiple published studies that
have investigated non-additive gene action related to
erythropoiesis and red blood cell traits (Table 2).
For example, when analyzing MCH, the strongest associ-

ation identified by SME is the SNP rs4711092 (p = 1:41 ×

10− 11), which maps to the gene secretagogin (SCGN).
SCGN regulates exocytosis by interacting with two soluble
N-ethylmaleimide sensitive fustion attachment proteins
(SNAP-25 and SNAP-23) and is critical for cell growth in
some tissues.45 For MCH, SME also identified five signifi-
cantly associated SNPs (e.g., rs9366624 with p = 1:8×

10− 9) in the gene capping protein regulator and myosin

1 linker 1 (CARMIL1). CARMIL1 is known to interact with
and regulate the capping protein (CP), which plays a role
via protein-protein interactions in regulating erythropoi-
esis.48 Specifically, CARMIL proteins regulate actin dy-
namics by regulating the activity of the CP.55,56 Erythropoi-
esis leads to modifications in the expression of membrane
and cytoskeletal proteins, whose interactions impact cell
structure and function.57,58 Both SCGN and CARMIL1
have previously been associated with hemoglobin concen-
tration.43,46 A complete list of the results for all traits is
listed in Tables S4–S7. As a baseline for comparison, we
also applied SME without an external data source
(i.e., 0% masked) and MAPIT to all significant SNPs. The
point of this analysis was to explore whether these tradi-
tional methods would have also identified the same sets
of epistatic variants. Due to computational constraints,
MAPIT was only implemented on a random subset of
10,000 individuals. Importantly, neither baseline identified
any genome-wide significant associations (Table 2).

Conditioning SME on GWAS variants reveals
epistasis in other complex traits
Next, we apply SME using a different external data source
to four traits assayed in the same 349,411White British in-
dividuals in the UK Biobank19 and genotyped at the
543,813 SNPs genome wide. These traits include body
height, MCH, uric acid (which we refer to as urate), and
VITDs. As an external data source, we leverage significant
trait associations from GWAS summary statistics (material
and methods). Here, we select the top 5,000 SNPs ranked
by strength of association (i.e., lowest p values) for height
and MCH and include all significant SNPs for urate (3,536
SNPs) and VITDs (547 SNPs). For each trait, we again use
Manhattan plots to visually display the variant-level

Figure 4. Uniform sparse modeling of
interactions enhances the empirical
power of SME
Synthetic traits were simulated with both
additive and pairwise epistatic effects using
chromosome 1 from individuals of self-
identifiedEuropean ancestry in theUKBio-
bank. Data were subsampled using sample
sizes of 50,000, 100,000, and 300,000 indi-
viduals. We randomly selected 10% of all
variants to have additive effects that collec-
tively explained 30% of the trait variance.
We then fixed the total epistatic variance
to 5%. The per-SNP epistatic phenotypic
variance explained (PVE) was adjusted by
varying the number of interacting SNPs
(chosen to be 10, 20, 50, or 100 SNPs).
Data were analyzed using both FAME (as a
baseline) and SME under varying percent-
ages of variants that are excluded from
consideration as potential interaction part-
ners for each focal SNP (0%, 95%, and 99%
masking, respectively). Empirical power
was determined using the significance
threshold p < 5× 10− 8. Results are based
on 100 simulations per scenario, with error
bars representing the standard deviation
across replicates.
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mapping results, with chromosomes shown in alternating
colors for clarity (Figures S13–S16). The nearest genes
mapped to the lead SNPs of peaks are highlighted.
Importantly, even when conditioning on GWAS sum-

mary statistics, SME identifies significant marginal
epistatic variants for both height and urate (see
Table S3). For example, when analyzing height, SME finds
significant epistasis for the SNP rs9467442 (p = 5:49 ×

10− 9), which maps to the gene cytidine monophospho-
N-acetylneuraminic acid hydroxylase, pseudogene
(CMAHP). Recently, CMAHP has been shown to be associ-
ated with body height for populations of European
ancestry.59 A complete list of the results for all traits is
listed in Tables S8–S11. Again, as a baseline for compari-
son, we apply SME without an external data source (i.e.,
0% masked) and MAPIT to all significant SNPs identified
by SME with masking. Due to computational constraints,
MAPIT was only applied to a random subset of 10,000 in-
dividuals. Neither baseline had enough power to identify
any significant associations at the genome-wide threshold
(Table S3).

Findings with SME are robust to sample composition
and phenotypic scaling
As a final analysis, we assess the replicability and robust-
ness of the marginal epistatic variants identified by SME.
First, for all traits with significant marginal epistasis
(MCH, MCV, height, and urate), we replicate the applica-
tion of SME using the respective external data sources
(DHS and GWAS) in two independent subsamples of
174,705 White British individuals from the UK Biobank19

genotyped at 543,813 SNPs genome-wide. Across the split-
half analyses, the overall results remained consistent,

highlighting that the genomic loci selected by SME had
stable marginal epistasis associations (Figures S17–S20).
Next, for all significant marginal epistasis associations,

we apply two additional variations of SME and FAME
(Table S12). First, we assess the scale invariance of the
signal by quantile normalizing the traits. Second, we in-
crease the stringency for which variants are excluded in
the mask—here, in addition to removing variants within
the LD block surrounding a focal SNP, we also exclude
all variants on the same chromosome. After quantile
normalization, most of the marginal epistasis signal re-
mained significant; however, SME lost all power after
excluding the entire chromosome where the focal SNP is
located. As part of future work, it will be important to
further distinguish statistically whether the observedmar-
ginal epistatic effects estimated by SME in these traits arise
from cis-chromosome interactions or same-locus additive
effects.60 Lastly, despite its inflated observed type I error,
FAME does not find significant marginal epistasis at any
of these loci.

Discussion

The marginal epistasis framework is an alternative to
detect gene interactions. It derives its power by modeling
the combined effect between a focal SNP and all other var-
iants, thus alleviating the need to test every possible inter-
action separately. Still, current methods seeking to iden-
tify marginal epistasis struggle to scale to biobank-scale
data and can be underpowered when non-additive genetic
effects only explain a small portion of the overall trait
variance.2,3 SME overcomes these limitations by inducing
sparsity, essentially limiting the combined interaction for

Figure 5. Manhattan plots of a
genome-wide interaction analysis us-
ing SME to study mean corpuscular he-
moglobin assayed in individuals in the
UK Biobank
As a mask in this study, we leveraged
DNase I-hypersensitive site (DHS) data
measured over 12 days of ex vivo erythroid
differentiation.27,33 This means that
while all SNPs are tested for marginal epis-
tasis, only their interactions with SNPs
in DHS regions are considered. Here, −
log10-transformed p values from SME are
plotted for each SNP against their genomic
positions. Chromosomes are shown in
alternating colors for clarity. The dashed
blue line represents the genome-wide sig-
nificance threshold (p < 5 × 10− 8). Each
image shows the same plot with different
aspects of the result highlighted. The first
simply shows the names of the closest
neighboring genes to significant epistatic
SNPs. The second image highlights the
SNPs that fall in DHS regions, and the third
image highlights SNPs that are also found
to have a significant (additive) association
with the trait according to a GWAS
(material and methods).
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a focal SNP to just regions of the genome that have some
known functional relationship with the quantitative trait
of interest. This approach not only results in more effi-
cient estimators but also offers a mechanism that allows
the method to perform genome-wide analyses on modern
datasets with runtimes that are magnitudes faster than
previous approaches. Through extensive simulations, we
show that SME controls type I error rates and produces
calibrated p values. We also show that SME has the power
to detect SNPs involved in epistasis even when they
explain very small fractions of the trait variance. By
analyzing hematology traits from participants in the UK
Biobank, we illustrate that SME, informed by DNase-seq
data, identifies statistical epistasis in variants for which
previous research has also found interaction pathways.
Split-half analyses on distinct subsets of the UK Biobank
also show that the non-additive signal in these hemato-
logical traits is robust. Lastly, to showcase SME in the
absence of biologically informative priors, we illustrate
that SME identifies significant marginal epistasis in height
and urate with sparsity induced by GWAS summary statis-
tics. We make SME available as an open-source R software
package to enable the broader community to easily use it
in their research.
The current implementation of SME offers many direc-

tions for future development and applications. For
example, the key to SME is that it relies on external data
sources to induce sparsity in the model. This reliance on
biologically informative priors to induce sparsity could

serve as a limitation, as appropriate external data may be
hard to identify in practice. While simulations show
that misspecified or localized sparsity does not jeopardize
the ability to control false positive rates, SME currently
does not provide instructions on how to best format the
external data for a particular analysis. In simulations, we
show that some choices can induce a structure that leads
to negative bias in the model estimates. We also show
that adding random “noise” to the data can reduce this
bias. As part of future work, we will explore how to auto-
matically balance this trade-off within the software.
An important consideration when mapping epistasis in

real data is that statistically inferred interactions in
GWASs may arise from same-locus additive effects.60

Consequently, SME—like any other computational
method for epistasis detection—may be confounded by
additive effects from untyped or unmodeled variants in
the same genomic region. For example, it was found in
Hemani et al.13 that an initial set of signals pointing to-
ward evidence of genetic interactions were better ex-
plained using linear models of unobserved variants in
the same haplotype.5 The analysis of real traits from the
UK Biobank presented in this work primarily serves to
illustrate potential use cases and demonstrate the scalabil-
ity of SME. In future work, we hope that SME will
contribute to characterizing the role of epistasis in human
traits. Such analyses should encompass a broader range of
traits across multiple cohorts and incorporate various
sparsity-inducing external data sources.

Table 2. SME identifies marginal epistasis in hematology traits from individuals in the UK Biobank

Trait ID Coordinates p value PVE

p value
(SME 0%
masked) p value (MAPIT) Gene Reference

MCH rs4711092 chr6:25684405 1:41× 10− 11 0.007 4:78× 10− 4 0:47 SCGN Qin et al.,45 Timoteo et al.46 Bauer et al.47

MCH rs9366624 chr6:25439492 1:80× 10− 9 0.011 5:75× 10− 7 9:37× 10− 3 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.56

MCH rs9461167 chr6:25418571 2:34× 10− 9 0.007 1:40× 10− 5 3:05× 10− 3 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.50

MCH rs9379764 chr6:25414023 5:53× 10− 9 0.012 4:58× 10− 6 0:21 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.,50 Vuckovic
et al.,51 Zhang et al.52

MCH rs441460 chr6:25548288 1:20× 10− 8 0.008 3:10× 10− 6 0:36 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.50

MCH rs198834 chr6:26114372 2:77× 10− 8 0.008 2:17× 10− 6 1:83× 10− 3 H2BC4 Vuckovic et al.,53 Zhang et al.54

MCH rs13203202 chr6:25582771 3:17× 10− 8 0.012 1:90× 10− 4 0:13 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.50

MCV rs9276 chr6:33053577 9:09× 10− 10 0.002 7:27× 10− 1 0:18 HLA-DPB1 –

MCV rs9366624 chr6:25439492 1:86× 10− 8 0.008 2:63× 10− 7 0:16 CARMIL1 Ding et al.,43 Ray et al.,48 Timoteo et al.,46

Edwards et al.,49 Yang et al.50

Here, we analyze 349,411 White British individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. Traits in this analysis included mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), and hematocrit (HCT). As a mask, we leveraged
DNase I-hypersensitive site (DHS) data measured over 12 days of ex vivo erythroid differentiation.27,33 Listed are only results corresponding to SNPs that have
marginal epistatic p values below a genome-wide significance threshold to correct for multiple testing (p < 5 × 10− 8). In the second and third columns, we
list SNPs and their genomic location in the format chromosome:base pair. Next, we give the p value and marginal epistatic phenotypic variance explained
(PVE) for each SNP as estimated by SME. The next two columns report the resulting p values when using SME without an external data source (i.e., 0% masked)
and MAPIT. The last columns detail the closest neighboring gene as well as a reference that has previously suggested some level of association or enrichment
between each gene and the traits of interest. Due to computational resource constraints, MAPIT was only applied to a random subset of 10,000 individuals.
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While SME uses an efficient model-fitting algorithm, its
current implementation has a non-negligible input/out-
put overhead from repeatedly needing to read in (often
large) genotype data into memory. Future development
that optimizes this file read bottleneck has the potential
to further improve the scalability of the method. Lastly,
the method currently only models quantitative traits.
Future work could extend the advantages of sparse
modeling of marginal epistasis to case-control traits.

Data and code availability

Source code and tutorials for implementing the SME are publicly
available as an R package, which is available online on CRAN
(https://cran.r-project.org/package=smer) and GitHub (https://
github.com/lcrawlab/sme). The full list of summary statistics
from the genome-wide interaction analysis using SME to study
hematology traits in UK Biobank is publicly available at https://
doi.org/10.5281/zenodo.14607997.
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Figure S1. Schematic overview illustrating the approximation to the stochastic trace es-
timator used in SME. (A) Computing the exact trace of a product for two covariance matrices is
computationally infeasible for large studies with many individuals. SME overcomes this limitation by
computing point estimates for variance components using a method-of-moments (MoM) algorithm that
features traces of matrix products with random vectors z. In the stochastic trace estimates, we can
identify reusable matrix-by-vector products. We see that the matrix-by-vector products of the form Az
with A 2 {K,Gj} and combinations thereof appear in multiple traces. (B) The genetic relatedness ma-
trix K is the same for all focal SNPs. Using unique random vectors in this computation for every focal
SNP, we compute the stochastic approximation repeatedly. Computing the matrix-by-vector products
Kz constitutes about half of the computation time of the point estimates when no mask is applied. It
constitutes most of the computation time when a mask induces sparsity. (C) By sharing random vectors
z between a set of focal SNPs, computing Kz can be done once for the entire set. With this, we greatly
reduce the computational burden of computing Kz.
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Figure S2. Computational time needed to run a single test with SME and FAME1 as a
function of sample size and total number of SNPs. The solid orange line represents the runtime
using FAME. The dotted yellow line shows the runtime of SME without a mask. The dashed purple line
represents the runtime of SME with 75% of variants masked. In all cases, the number of random vectors
is fixed at 100. The number of variants sharing random vectors in SME is fixed at 90. Computations were
performed on an Intel(R) Xeon(R) Platinum 8268 CPU with 30 cores. (A) Computational time per test
(in seconds) as a function of sample size, with the genome size fixed at 20,000 SNPs. (B) Computational
time per test (in seconds) as a function of the genome size in number of SNPs, with the sample size fixed
at 100,000 individuals.
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Figure S3. Computational time needed to run a single test with SME and FAME1 as a
function of the number of random vectors and number of SNPs sharing random vectors.
The solid orange line represents the runtime using the command-line tool FAME. The dotted yellow
line shows the runtime using the R function of SME without applying a mask. The dashed purple line
represents the runtime using SME with 75% of the variants masked. The analyzed data had a genome
size of 20,000 SNPs and a sample size of 100,000 individuals. All computations were performed on an
Intel(R) Xeon(R) Platinum 8268 CPU with 30 cores. (A) Computational time per test as a function
of the number of random vectors used in the stochastic trace estimator. The number of focal variants
sharing random vectors (chunk size) in SME was fixed at 90. (B) Computational time per test as a
function of the number of focal variants sharing random vectors (chunk size). The number of random
vectors was fixed at 100.
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Figure S4. The SME stochastic method-of-moments algorithm produces estimates that
are robust to the choice of number of random vectors and the number of SNPs sharing
random vectors. Synthetic traits were simulated under the null hypothesis (H0) of no epistasis and
the alternaitve hypothesis (H1) using chromosome 1 from individuals of self-identified European ancestry
in the UK Biobank 100k individuals. We randomly selected 10% of all variants to have additive effects
that collectively explained 30% of the trait variance. For simulations under H1, we then fixed the total
epistatic variance to 5%. The per SNP epistatic phenotypic variance explained (PVE) was adjusted by
randomly choosing 10 epistatic SNPs. (A) Marginal epistatic variance component estimates as a function
of the number of SNPs sharing random vectors in the stochastic trace estimates (also see Fig. S1). The
number of random vectors was fixed at 100. (B) Marginal epistatic variance component estimates as a
function of number of random vectors in the stochastic trace estimates. The number of SNPs sharing
random vectors was fixed at 100. In both panels, the orange box plots show the results of using SME
with no masking applied. The light and dark purple show the results for implementing SME with 95%
and 99% masking, respectively. The dashed green line indicates the true marginal epistatic PVE used in
the simulations.
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Figure S5. Schematic overview illustrating weight matrices with uniform and localized
sparsity. (A) The simulations consider two scenarios that result in different distributions of sparsely
modeled gene-interactions. The weight matrices are binary everywhere except for places on the diagonal
where variants satisfy some criteria from an external data source (e.g., it is located in a position on the
genome that overlaps with open chromatin regions). The first column illustrates uniform sparsity where
non-zero entries are evenly distributed along the diagonal. As a result the modeled gene-interactions are
evenly distributed along the genome. In the second scenario, the external data source induces localized
sparsity where the modeled gene-interactions are concentrated in a small genomic window illustrated
as a block structure in the weight matrix. (B) SME produces negatively biased variance component
estimates when using an external data source that induces localized sparsity in the model. To overcome
this issue in practice, we propose a strategy in which we take an external data source with localized
genomic information and randomly unmask “unimportant” variants with uniform probability along the
genome (making the localized sparsity look more uniform). The cartoon illustrates the distribution of
non-zero weights in the weight matrix after including an additional 1⇥ and 5⇥ of initially disregarded
interactions.
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Figure S6. While using a mask that induces localized sparsity, SME is negatively biased
under the null hypothesis. Synthetic traits were simulated with only additive effects using chromo-
some 1 from individuals of self-identified European ancestry in the UK Biobank. These data were then
subsampled using sample sizes of 50k, 100k, and 300k individuals. We randomly selected 10% of all vari-
ants to be causal with additive effects and we assume that they explain 40% of the phenotypic variance
for each trait. To simulate localized sparsity in the mask, we randomly sample a seed SNP and define a
block around it. All SNPs not in that block are masked. Data were analyzed with SME under varying
percentages of SNPs that are masked (0%, 95%, and 99%, respectively). The small insets in each plot
show the distribution of the estimated marginal epistatic variance components across all experiments.
For reference, under the null hypothesis H0 : �2 = 0. Results are based on 100 simulations per scenario.
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Figure S7. Consequence of having a misspecified mask on power and variance component es-
timates in SME. Synthetic traits were simulated using chromosome 1 from individuals of self-identified
European ancestry in the UK Biobank. Data were subsampled to 100k individuals. We randomly se-
lected 10% of all variants to have additive effects that collectively explained 30% of the trait variance.
We then fixed the total epistatic variance to 5%. Each epistatic SNP was simulated to have 5 interaction
partners. SME was given a weight matrix in which 95% of all SNPs were masked. In this simulation,
we investigate a scenario where the weight matrix incorrectly masked 0 to 5 of true interacting partners
for each causal SNP. (A) Empirical power computed as the function of masked true interactive partners.
Here, significant SNPs were evaluated at a genome-wide threshold P < 5 ⇥ 10�8. Error bars represent
the standard deviation across 100 replicate experiments. (B) Marginal epistatic variance component
estimates (�̂2) as a function of masked true interactive partners. The dashed green line represents the
true simulated per SNP epistatic phenotypic variance explained (PVE).
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Figure S8. SME exhibits less power when using a mask that induces localized sparsity.
Synthetic traits were simulated with both additive and pairwise epistatic effects using chromosome 1
from individuals of self-identified European ancestry in the UK Biobank. Data were subsampled using
sample sizes of 50k, 100k, and 300k individuals. We randomly selected 10% of all variants to have additive
effects that collectively explained 30% of the trait variance. We then fixed the total epistatic variance to
5%. The per SNP epistatic phenotypic variance explained (PVE) was adjusted by varying the number
of interacting SNPs (chosen to be 10, 20, 50, or 100 SNPs). Data were analyzed using SME under
varying percentages of variants that are excluded from consideration as potential interaction partners for
each focal SNP (0%, 95%, and 99% masking, respectively). Empirical power was determined using the
significance threshold P < 5 ⇥ 10�8. Results for uniform sparsity are given on the bottom as reference.
We conducted 100 simulations per scenario, with error bars representing the standard deviation across
replicates.
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Figure S9. Adding random noise to external data sources that induce localized sparsity
recoveres empirical power and reduces the negative biase in variance component estimates.
Synthetic traits were simulated with both additive and pairwise epistatic effects using chromosome 1
from individuals of self-identified European ancestry in the UK Biobank. Data were subsampled using
sample sizes of 50k, 100k, and 300k individuals. We randomly selected 10% of all variants to have
additive effects that collectively explained 30% of the trait variance. We then fixed the total epistatic
variance to 5%. The per SNP epistatic phenotypic variance explained (PVE) was adjusted by varying
the number of interacting SNPs (chosen to be 10, 20, 50, or 100 SNPs). We simulated external data
sources that induced both uniform sparsity (dark purple) and localized sparsity (dark orange) resulting
in 99% of variants being masked. To counteract the negative bias of the localized sparsity, we randomly
unmask 1% and 5% additional SNPs with uniform probability along the entire chromosome—making
the localized sparsity look more uniform (also see Fig. S5). (A) Empirical power at a genome-wide
significance threshold P < 5 ⇥ 10�8, shown as a function of the per SNP epistatic phenotypic variance
explained (PVE) by causal variants across three different sample sizes. Error bars represent the standard
deviation across 100 replicate experiments. (B) Marginal epistatic variance component estimates (�̂2)
on simulated traits with 300k individuals. The dashed green line represents the true per SNP epistatic
PVE.
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Figure S10. Manhattan plots of a genome-wide interaction analysis using SME to study
mean corpuscular volume (MCV) assayed in individuals in the UK Biobank. As a mask
in this study, we leveraged DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo
erythroid differentiation2,3. This means that, while all SNPs are tested for marginal epistasis, only their
interactions with SNPs in DHS regions are considered. Here, �log10 transformed P -values from SME
are plotted for each SNP against their genomic positions. Chromosomes are shown in alternating colors
for clarity. The dashed blue line represents the genome-wide significance threshold (P < 5 ⇥ 10�8).
Each panel shows the same plot with different aspects of the result highlighted. The first simply shows
the names of the closest neighboring genes to significant epistatic SNPs. The second panel highlights
the SNPs that fall in DHS regions, and the third panel highlights SNPs that were also found to have a
significant (additive) association with the trait according to a GWAS.
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Figure S11. Manhattan plots of a genome-wide interaction analysis using SME to study
mean corpuscular hemoglobin concentration (MCHC) assayed in individuals in the UK
Biobank. As a mask in this study, we leveraged DNase I-hypersensitive sites (DHS) data measured over
12 days of ex vivo erythroid differentiation2,3. This means that, while all SNPs are tested for marginal
epistasis, only their interactions with SNPs in DHS regions are considered. Here, �log10 transformed
P -values from SME are plotted for each SNP against their genomic positions. Chromosomes are shown
in alternating colors for clarity. The dashed blue line represents the genome-wide significance threshold
(P < 5 ⇥ 10�8). Each panel shows the same plot with different aspects of the result highlighted. The
first simply shows the names of the closest neighboring genes to significant epistatic SNPs. The second
panel highlights the SNPs that fall in DHS regions, and the third panel highlights SNPs that were also
found to have a significant (additive) association with the trait according to a GWAS.
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Figure S12. Manhattan plots of a genome-wide interaction analysis using SME to study
hematocrit (HCT) assayed in individuals in the UK Biobank. As a mask in this study, we
leveraged DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid differ-
entiation2,3. This means that, while all SNPs are tested for marginal epistasis, only their interactions
with SNPs in DHS regions are considered. Here, �log10 transformed P -values from SME are plotted for
each SNP against their genomic positions. Chromosomes are shown in alternating colors for clarity. The
dashed blue line represents the genome-wide significance threshold (P < 5 ⇥ 10�8). Each panel shows
the same plot with different aspects of the result highlighted. The first simply shows the names of the
closest neighboring genes to significant epistatic SNPs. The second panel highlights the SNPs that fall
in DHS regions, and the third panel highlights SNPs that were also found to have a significant (additive)
association with the trait according to a GWAS.
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Figure S13. Manhattan plots of a genome-wide interaction analysis using SME to study
uric acid (urate) assayed in individuals in the UK Biobank. As a mask in this study, we leveraged
3,536 significant GWAS variants. This means that, while all SNPs are tested for marginal epistasis, only
their interactions with SNPs identified by GWAS are considered. Here, �log10 transformed P -values from
SME are plotted for each SNP against their genomic positions. Chromosomes are shown in alternating
colors for clarity. The dashed blue line represents the genome-wide significance threshold (P < 5⇥10�8).
Each panel shows the same plot with different aspects of the result highlighted. The first simply shows
the names of the closest neighboring genes to significant epistatic SNPs. The second panel highlights the
SNPs that are modeled to interact with the focal SNP, and the third panel highlights SNPs that were
also found to have a significant (additive) association with the trait according to a GWAS.
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Figure S14. Manhattan plots of a genome-wide interaction analysis using SME to study
vitamin D levels (VITD) assayed in individuals in the UK Biobank. As a mask in this study,
we leveraged 547 significant GWAS variants. This means that, while all SNPs are tested for marginal
epistasis, only their interactions with SNPs identified by GWAS are considered. Here, �log10 transformed
P -values from SME are plotted for each SNP against their genomic positions. Chromosomes are shown
in alternating colors for clarity. The dashed blue line represents the genome-wide significance threshold
(P < 5⇥10�8). Each panel shows the same plot with different aspects of the result highlighted. The first
simply shows the names of the closest neighboring genes to significant epistatic SNPs. The second panel
highlights the SNPs that are modeled to interact with the focal SNP, and the third panel highlights SNPs
that were also found to have a significant (additive) association with the trait according to a GWAS.
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Figure S15. Manhattan plots of a genome-wide interaction analysis using SME to study
body height assayed in individuals in the UK Biobank. As a mask in this study, we leveraged
the top 5,000 significant GWAS variants ranked by strength of association (i.e., lowest P -values). This
means that, while all SNPs are tested for marginal epistasis, only their interactions with the top SNPs
identified by GWAS are considered. Here, �log10 transformed P -values from SME are plotted for each
SNP against their genomic positions. Chromosomes are shown in alternating colors for clarity. The
dashed blue line represents the genome-wide significance threshold (P < 5 ⇥ 10�8). Each panel shows
the same plot with different aspects of the result highlighted. The first simply shows the names of the
closest neighboring genes to significant epistatic SNPs. The second panel highlights the SNPs that are
modeled to interact with the focal SNP, and the third panel highlights SNPs that were also found to have
a significant (additive) association with the trait according to a GWAS.



MCH

6 7 10

0

5

10

0

5

10

0

5

10

Chromosome

−l
og
10
(p
)

Bonferroni SNPs in Mask GWAS Significant SNPs

HLA-DMA TFR2
NCOA4

Figure S16. Manhattan plots of a genome-wide interaction analysis using SME to study
mean corpuscular hemoglobin (MCH) assayed in individuals in the UK Biobank. As a mask
in this study, we leveraged the top 5,000 significant GWAS variants ranked by strength of association (i.e.,
lowest P -values). This means that, while all SNPs are tested for marginal epistasis, only their interactions
with the top SNPs identified by GWAS are considered. Here, �log10 transformed P -values from SME
are plotted for each SNP against their genomic positions. Chromosomes are shown in alternating colors
for clarity. The dashed blue line represents the genome-wide significance threshold (P < 5⇥ 10�8). Each
panel shows the same plot with different aspects of the result highlighted. The first simply shows the
names of the closest neighboring genes to significant epistatic SNPs. The second panel highlights the
SNPs that are modeled to interact with the focal SNP, and the third panel highlights SNPs that were
also found to have a significant (additive) association with the trait according to a GWAS.
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Figure S17. Manhattan plots of a genome-wide interaction split-half analysis using SME
to study mean corpuscular hemoglobin (MCH) assayed in two distinct subsets of 174,705
individuals each taken from the UK Biobank. As a mask in this study, we leveraged DNase I-
hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid differentiation2,3. This means
that, while all SNPs are tested for marginal epistasis, only their interactions with SNPs in DHS regions
are considered. Here, �log10 transformed P -values from SME are plotted for each SNP against their
genomic positions. Chromosomes are shown in alternating colors for clarity. Variant-level results for the
first replicate is shown in gray tones with a positive y-axis, while results for the second cohort is mirrored
along the negative half of the y-axis and colored in green.
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Figure S18. Manhattan plots of a genome-wide interaction split-half analysis using SME to
study mean corpuscular volume (MCV) assayed in two distinct subsets of 174,705 individu-
als each taken from the UK Biobank. As a mask in this study, we leveraged DNase I-hypersensitive
sites (DHS) data measured over 12 days of ex vivo erythroid differentiation2,3. This means that, while all
SNPs are tested for marginal epistasis, only their interactions with SNPs in DHS regions are considered.
Here, �log10 transformed P -values from SME are plotted for each SNP against their genomic positions.
Chromosomes are shown in alternating colors for clarity. Variant-level results for the first replicate is
shown in gray tones with a positive y-axis, while results for the second cohort is mirrored along the
negative half of the y-axis and colored in green.
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Figure S19. Manhattan plots of a genome-wide interaction split-half analysis using SME
to study uric acid (urate) assayed in two distinct subsets of 174,705 individuals each taken
from the UK Biobank. As a mask in this study, we leveraged GWAS summary statistics reported in
the UK Biobank. This means that, while all SNPs are tested for marginal epistasis, only their interactions
with SNPs associated with the trait are considered. Here, �log10 transformed P -values from SME are
plotted for each SNP against their genomic positions. Chromosomes are shown in alternating colors for
clarity. Variant-level results for the first replicate is shown in gray tones with a positive y-axis, while
results for the second cohort is mirrored along the negative half of the y-axis and colored in green.
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Figure S20. Manhattan plots of a genome-wide interaction split-half analysis using SME
to study body height assayed in two distinct subsets of 174,705 individuals each taken from
the UK Biobank. As a mask in this study, we leveraged GWAS summary statistics reported in the UK
Biobank. This means that, while all SNPs are tested for marginal epistasis, only their interactions with
SNPs associated with the trait are considered. Here, �log10 transformed P -values from SME are plotted
for each SNP against their genomic positions. Chromosomes are shown in alternating colors for clarity.
Variant-level results for the first replicate is shown in gray tones with a positive y-axis, while results for
the second cohort is mirrored along the negative half of the y-axis and colored in green.



Table S1. While using a mask that induces uniform sparsity, SME estimates zero marginal
epistasis under the null hypothesis when traits are generated by only additive effects.
Synthetic traits were simulated with only additive effects using chromosome 1 from individuals of self-
identified European ancestry in the UK Biobank. These data were then subsampled using sample sizes
of 20k, 50k, and 100k individuals. We randomly selected 10% of all variants to be causal with additive
effects and we assume that they explain 40% of the phenotypic variance for each trait. Data were an-
alyzed using both FAME (as a baseline) and SME under varying percentages of SNPs that are masked
(0%, 95%, and 99%, respectively). For reference, under the null hypothesis H0 : �2 = 0. Results are
based on 100 simulated traits per scenario and values in the parentheses are the standard deviations of
the variance component estimates across replicates. The results in this table correspond to the data in
the insets of Fig. 3 in the main text.

Method Sample Size �̂
2 (Standard Deviation)

FAME

20k 0.000245 (0.003912)

50k 0.000349 (0.002053)

100k 0.000519 (0.001491)

SME (0% masked)

20k 0.000046 (0.003872)

50k 0.000038 (0.001934)

100k 0.000065 (0.001120)

300k 0.000039 (0.000504)

SME (95% masked)

20k 0.000024 (0.002355)

50k 0.000021 (0.001064)

100k 0.000022 (0.000571)

300k 0.000010 (0.000211)

SME (99% masked)

20k -0.000010 (0.001318)

50k 0.000011 (0.000562)

100k 0.000009 (0.000285)

300k 0.000003 (0.000101)



Table S2. While using a mask that induces localized sparsity, SME produces deflated type
I error rates when synthetic traits are generated under the null model. Synthetic traits were
simulated with only additive effects using chromosome 1 from individuals of self-identified European
ancestry in the UK Biobank. These data were then subsampled using sample sizes of 20k, 50k, 100k,
and 300k individuals. A total of 100 causal additive variants were randomly selected for each trait and
their effects were assumed to explain 40% of the phenotypic variance. Data were analyzed using SME
under varying percentages of SNPs that are masked (0%, 95%, and 99%, respectively). Empirical size
for the analyses used significance thresholds of ↵ = 0.05, 0.01, and 0.001. Values in the parentheses are
the standard deviations of the estimates. Results are based on 100 simulations per scenario.

Method Sample Size ↵=0.05 ↵=0.01 ↵=0.001

SME (0% masked)

20k 0.0414 (0.0181) 0.0052 (0.0081) 0.0000 (0.0000)

50k 0.0427 (0.0199) 0.0073 (0.0095) 0.0005 (0.0022)

100k 0.0474 (0.0234) 0.0073 (0.0081) 0.0006 (0.0024)

300k 0.0614 (0.0279) 0.0082 (0.0099) 0.0011 (0.0032)

SME (95% masked)

20k 0.0204 (0.0148) 0.0009 (0.0029) 0.0000 (0.0000)

50k 0.0232 (0.0178) 0.0007 (0.0026) 0.0000 (0.0000)

100k 0.0278 (0.0164) 0.0021 (0.0043) 0.0000 (0.0000)

300k 0.0359 (0.0201) 0.0030 (0.0055) 0.0005 (0.0021)

SME (99% masked)

20k 0.0044 (0.0066) 0.0000 (0.0000) 0.0000 (0.0000)

50k 0.0039 (0.0069) 0.0000 (0.0000) 0.0000 (0.0000)

100k 0.0048 (0.0069) 0.0000 (0.0000) 0.0000 (0.0000)

300k 0.0077 (0.0080) 0.0002 (0.0015) 0.0000 (0.0000)



Table S3. SME identifies marginal epistasis in complex traits from individuals in the UK Biobank. Here, we analyze
349,411 white British individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. Traits in this analysis included: body
height, mean corpuscular hemoglobin (MCH), uric acid (urate), and vitamin D levels (VITD). As a mask, we leveraged significant trait
associations from GWAS summary statistics. Listed are only results corresponding to SNPs that have marginal epistatic P -values below
a genome-wide significance threshold to correct for multiple testing (P < 5 ⇥ 10−8). In the second and third columns, we list SNPs
and their genomic location in the format Chromosome:Basepair. Next, we give the P -value and marginal epistatic phenotypic variance
explained (PVE) for each SNP as estimated by SME. The next two columns report the P -values for SME without external data source
(i.e., 0% masked) and MAPIT. The last columns detail the closest neighboring gene and a reference that have previously suggested some
level of association or enrichment between each gene and the traits of interest. Due to computational resource constraints, MAPIT was
applied to a random subset of 10k individuals.

Trait ID Coordinates P -Value PVE

P -Value

(0%

Masked)

P -Value

(MAPIT)
Gene Ref.

Urate rs75372872 4:10835207 8.81⇥ 10�11 0.00031 2.72⇥ 10�3 0.22 – –

Height rs9467442 6:25224925 5.49⇥ 10�9 0.001 1 0.07 CMAHP 4



Table S4. Complete list of marginal epistasis results from running SME on mean corpuscular
hemoglobin (MCH) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white
British individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged
DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid differentiation2,3.In
the first three columns, we list the identifier of the SNPs, their chromosome, and their genomic location
(basepair position). Next, we give the P -value and marginal epistatic phenotypic variance explained
(PVE) for each SNP as estimated by SME. In the last two columns, we give the abbreviation for the
trait that is analyzed and the type of the external data source used to induce sparsity. These results are
saved as comma-separated value (CSV) files and can be downloaded directly from https://doi.org/
10.5281/zenodo.14607997.

Table S5. Complete list of marginal epistasis results from running SME on mean corpuscular
hemoglobin concentration (MCHC) assayed in individuals in the UK Biobank. Here, we
analyze 349,411 white British individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As
a mask, we leveraged DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid
differentiation2,3. In the first three columns, we list the identifier of the SNPs, their chromosome, and
their genomic location (basepair position). Next, we give the P -value and marginal epistatic phenotypic
variance explained (PVE) for each SNP as estimated by SME. In the last two columns, we give the
abbreviation for the trait that is analyzed and the type of the external data source used to induce
sparsity. These results are saved as comma-separated value (CSV) files and can be downloaded directly
from https://doi.org/10.5281/zenodo.14607997.

Table S6. Complete list of marginal epistasis results from running SME on mean corpuscular
volume (MCV) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white British
individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged
DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid differentiation2,3.
In the first three columns, we list the identifier of the SNPs, their chromosome, and their genomic
location (basepair position). Next, we give the P -value and marginal epistatic phenotypic variance
explained (PVE) for each SNP as estimated by SME. In the last two columns, we give the abbreviation
for the trait that is analyzed and the type of the external data source used to induce sparsity. These
results are saved as comma-separated value (CSV) files and can be downloaded directly from https:
//doi.org/10.5281/zenodo.14607997.

Table S7. Complete list of marginal epistasis results from running SME on hematocrit
(HCT) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white British
individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged
DNase I-hypersensitive sites (DHS) data measured over 12 days of ex vivo erythroid differentiation2,3.
In the first three columns, we list the identifier of the SNPs, their chromosome, and their genomic
location (basepair position). Next, we give the P -value and marginal epistatic phenotypic variance
explained (PVE) for each SNP as estimated by SME. In the last two columns, we give the abbrevi-
ation for the trait that is analyzed and the type of the external data source used to induce sparsity.
These results are saved as comma-separated value (CSV) files and can be downloaded directly from
https://doi.org/10.5281/zenodo.14607997.

https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997


Table S8. Complete list of marginal epistasis results from running SME on body height
assayed in individuals in the UK Biobank. Here, we analyze 349,411 white British individuals in the
UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged the top 5,000 significant
GWAS variants ranked by strength of association (i.e., lowest P -values). In the first three columns, we list
the identifier of the SNPs, their chromosome, and their genomic location (basepair position). Next, we
give the P -value and marginal epistatic phenotypic variance explained (PVE) for each SNP as estimated
by SME. In the last two columns, we give the abbreviation for the trait that is analyzed and the type
of the external data source used to induce sparsity. These results are saved as comma-separated value
(CSV) files and can be downloaded directly from https://doi.org/10.5281/zenodo.14607997.

Table S9. Complete list of marginal epistasis results from running SME on mean corpuscular
hemoglobin (MCH) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white
British individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged
the top 5,000 significant GWAS variants ranked by strength of association (i.e., lowest P -values). In the
first three columns, we list the identifier of the SNPs, their chromosome, and their genomic location
(basepair position). Next, we give the P -value and marginal epistatic phenotypic variance explained
(PVE) for each SNP as estimated by SME. In the last two columns, we give the abbreviation for the
trait that is analyzed and the type of the external data source used to induce sparsity. These results are
saved as comma-separated value (CSV) files and can be downloaded directly from https://doi.org/
10.5281/zenodo.14607997.

Table S10. Complete list of marginal epistasis results from running SME on uric acid
(or urate) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white British
individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged 3,536
significant trait associations from GWAS summary statistics. In the first three columns, we list the
identifier of the SNPs, their chromosome, and their genomic location (basepair position). Next, we give
the P -value and marginal epistatic phenotypic variance explained (PVE) for each SNP as estimated by
SME. In the last two columns, we give the abbreviation for the trait that is analyzed and the type of the
external data source used to induce sparsity. These results are saved as comma-separated value (CSV)
files and can be downloaded directly from https://doi.org/10.5281/zenodo.14607997.

Table S11. Complete list of marginal epistasis results from running SME on vitamin D
levels (VITD) assayed in individuals in the UK Biobank. Here, we analyze 349,411 white British
individuals in the UK Biobank genotyped at 543,813 SNPs genome-wide. As a mask, we leveraged 547
significant trait associations from GWAS summary statistics. In the first three columns, we list the
identifier of the SNPs, their chromosome, and their genomic location (basepair position). Next, we give
the P -value and marginal epistatic phenotypic variance explained (PVE) for each SNP as estimated by
SME. In the last two columns, we give the abbreviation for the trait that is analyzed and the type of the
external data source used to induce sparsity. These results are saved as comma-separated value (CSV)
files and can be downloaded directly from https://doi.org/10.5281/zenodo.14607997.

https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997
https://doi.org/10.5281/zenodo.14607997


Table S12. Assessing the robustness of SME to phenotypic scaling and masking composition for traits analyzed in
the UK Biobank. We analyzed 349,411 unrelated white British individuals in the UK Biobank, genotyped at 543,813 SNPs genome-
wide. For mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV), we used DNase I-hypersensitive site (DHS) data
measured over 12 days of ex vivo erythroid differentiation as the masking annotation2,3. For uric acid (urate) and body height, we
used significant trait associations from GWAS summary statistics to construct the mask. The table reports only SNPs for which SME
identified marginal epistatic P -values below the genome-wide significance threshold (P < 5 ⇥ 10�8). The second and third columns list
the SNP and corresponding SME P -value leveraging external data to induce sparsity. Columns four to six show SME P -values based on
quantile-normalized traits, exclusion of interactions with SNPs on the focal chromosome, and no external data (0% masked). The final
two columns present P -values from FAME and MAPIT. Due to computational resource constraints, MAPIT was applied to a random
subset of 10k individuals. NA: test resulted in a missing variance estimate for the marginal epistatic variance component.

Trait ID P -Value P -Value
(QQ-Norm)

P -Value
(Excl. Chr.)

P -Value (0%
Masked)

P -Value
(FAME)

P -Value
(MAPIT)

MCH rs4711092 1.41⇥ 10�11 8.20⇥ 10�12 0.78 4.78⇥ 10�4 5.37⇥ 10�6 0.47

MCH rs9366624 1.80⇥ 10�9 7.37⇥ 10�9 1.21⇥ 10�3 5.75⇥ 10�7 7.16⇥ 10�7 9.37⇥ 10�3

MCH rs9461167 2.34⇥ 10�9 3.37⇥ 10�9 0.73 1.40⇥ 10�5 5.73⇥ 10�7 3.05⇥ 10�3

MCH rs9379764 5.53⇥ 10�9 1.02⇥ 10�8 0.62 4.58⇥ 10�6 4.53⇥ 10�6 0.21

MCH rs441460 1.20⇥ 10�8 9.18⇥ 10�9 0.52 3.07⇥ 10�6 5.67⇥ 10�6 0.36

MCH rs198834 2.77⇥ 10�8 1.36⇥ 10�7 0.17 2.17⇥ 10�6 1.49⇥ 10�7 1.83⇥ 10�3

MCH rs13203202 3.17⇥ 10�8 6.31⇥ 10�8 3.92⇥ 10�2 1.90⇥ 10�4 9.02⇥ 10�5 0.13

MCV rs9276 9.09⇥ 10�10 1 2.94⇥ 10�2 0.73 NA 0.18

MCV rs9366624 1.86⇥ 10�8 1.27⇥ 10�8 4.06⇥ 10�3 2.63⇥ 10�7 8.64⇥ 10�7 0.16

Urate rs75372872 8.81⇥ 10�11 3.82⇥ 10�11 0.93 2.72⇥ 10�3 1.55⇥ 10�3 0.22

Height rs9467442 5.49⇥ 10�9 NA 0.65 1 1 0.07
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