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A fundamental goal of genetics is to identify which and how genetic variants are associated with a trait, often using the regres-
sion results from genome-wide association (GWA) studies. Importantmethodological challenges account for inflation inGWA
effect estimates as well as in investigating more than one trait simultaneously. We leverage machine learning approaches for
these two challenges, developing a computationally efficient method calledML-MAGES. First, we shrink the inflation in GWA
effect sizes caused by nonindependence among variants using neural networks. We then cluster variant associations among
multiple traits via variational inference. We compare the performance of shrinkage via neural networks to regularized regres-
sion and fine-mapping, two approaches used for addressing inflated effects but dealing with variants in focal regions of differ-
ent sizes. Our neural network shrinkage outperforms both methods in approximating the true effect sizes in simulated data.
Our infinite mixture clustering approach offers a flexible, data-driven way to distinguish different types of associations—trait-
specific, shared across traits, or nonprioritized—among multiple traits based on their regularized effects. Clustering applied to
our neural network shrinkage results also produces consistently higher precision and recall for distinguishing gene-level asso-
ciations in simulations. We demonstrate the application of ML-MAGES on association analyses of two quantitative traits and
two binary traits in the UK Biobank. Our identified associated genes from single-trait enrichment tests overlap with those hav-
ing known relevant biological processes to the traits. Besides trait-specific associations, ML-MAGES identifies several variants
with shared multitrait associations, suggesting putative shared genetic architecture.

[Supplemental material is available for this article.]

Genome-wide association (GWA) studies analyze genome-wide ge-
notype data from a large group of unrelated individuals to identify
genetic mutations, usually single-nucleotide polymorphisms
(SNPs), that are associated with some trait such as height, molecu-
lar biomarkers, or diseases. With advancements in sequencing
technologies and the emergence of biobank data sets that sample
hundreds of thousands of individuals, GWA studies have proven
powerful in detecting potential causal variants for various traits
and diseases. More than 45,000 GWA studies investigating more
than 5000 human phenotypes have been published since 2005
(Buniello et al. 2018; Sollis et al. 2022).

The fundamental idea behindGWA studies is based on fitting
a linear regression in which each SNP genotype is treated as an in-
dependent variable, and the trait value of interest is the dependent
variable. The regression coefficients are “effect sizes” of variants.
GWA studies generally focus on a single trait. To increase statistical
power, SNP-level signals are often aggregated to assess gene-level
association (Conneely and Boehnke 2007; Lehne et al. 2011;
Svishcheva et al. 2019).

A key challenge in analyzing GWA results is controlling the
inflation of effect sizes, which complicates the identification of
truly associated variants. Most GWA models assume genetic vari-
ants to be independent, but there are consistent nonrandom asso-
ciations among genotypes in a sample, known as linkage
disequilibriums (LDs). Closer mutations exhibit higher LD (i.e.,
correlation), which is also influenced by recombination rates and
population history. GWA signals from nonassociated variants

can obscure or even surpass those of truly associated ones owing
to LD, especially in regions with dense variants. Additionally,
many complex traits are highly polygenic (influenced by thou-
sands of variants), further complicating the localization of truly as-
sociated ones (Bulik-Sullivan et al. 2015; Pasaniuc and Price 2016;
Boyle et al. 2017; Visscher et al. 2021).

Exploringmultiple traits simultaneously is another challenge
in analyzing GWA results. Joint analysis of multiple traits provides
insights into their shared biological pathways by revealing interac-
tions between genetic variants and the traits of interest. Current
multitrait approaches typically either combine univariate GWA re-
sults to improve statistical power (Cotsapas et al. 2011; Solovieff
et al. 2013; Bolormaa et al. 2014) or estimate trait-specific effects
to disentangle single trait signals from the joint analysis (Turley
et al. 2018; Urbut et al. 2018). Distinguishing between trait-specific
and pleiotropic variants, in which a single variant influences mul-
tiple traits (Stearns 2010; Wagner and Zhang 2011), is important
for generating targeted hypotheses for precision medicine and
drug discovery (Solovieff et al. 2013).

We present machine learning for multivariate association
analyses with genes and effect size shrinkage (ML-MAGES), a
new scalable method that uses neural networks (NNs) and varia-
tional inference to analyze multitrait GWA effects. It performs ef-
fect size shrinkage via supervised learning with NNs, controlling
for the inflation of effect sizes caused by LD. Subsequently, our
method identifies multitrait association patterns by clustering var-
iants based on these controlled effects across multiple traits via an
infinite mixture model. The resulting clusters suggest distinct
types of associations like those that are shared versus those that
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are trait specific. As a final step, the shrunken effect sizes are aggre-
gated to provide gene-level summaries of association.

In polygenic modeling, methods like regularized regression
and Bayesianmethods with Gaussianmixture priors are common-
ly used to induce sparsity, assigning nonzero effects to associated
variants while shrinking effects for the rest (Supplemental
Methods S1.3; Wu et al. 2009; Cho et al. 2010; Logsdon et al.
2010; Guan and Stephens 2011; Zhou et al. 2013; Thompson
et al. 2015; Stephens 2016; Zhu and Stephens 2017; Urbut et al.
2018; Zhang et al. 2018; Zhao et al. 2019; Holland et al. 2020).

In genetic research, fine-mapping is a closely related task to
effect size shrinkage. It pinpoints a set of putative causal variants
within a small trait-associated region and assigns posterior proba-
bilities of causality to variants (Supplemental Methods S1.3;
Hormozdiari et al. 2014; Spain and Barrett 2015; Benner et al.
2016; Pasaniuc and Price 2016; Schaid et al. 2018; Yang et al.
2023; Ghosal et al. 2024). Although some fine-mapping methods,
like FINEMAP (Benner et al. 2016) and SuSiE (with extension SuSiE-
RSS) (Wang et al. 2020; Zou et al. 2022), generate posterior effect
sizes, their primary goal is to prioritize likely causal variants.

To distinguish true from spurious single-trait associations,
Cheng et al. (2020) developed gene-1. It first shrinks SNP effect siz-
es using elastic net regularization (Zou and Hastie 2005) and then
clusters them with a K-mixture model. The resulting component
variances are used to test for gene-level associations.

Results

Workflow of ML-MAGES

Inspired by the single-trait gene-1 framework, we propose ML-
MAGES to advancemultivariateGWA analyses. Ourmethod intro-
duces two key innovations: (1) using deep learning for efficient ef-
fect size shrinkage to control for inflation and (2) using variational
inference for flexible clustering of multitrait associations.

The three main steps of ML-MAGES workflow (for details, see
Methods) (Fig. 1) are effect size shrinkage using GWA summary sta-
tistics and LD, association clustering of regularized effects based on
their multitrait association patterns, and gene-level analysis via ag-
gregation of effects and variant clusters.

Effect size shrinkage

LD introduces inflation into observed GWA effect sizes (b̂) com-
pared with the true effects (β). The goal of effect size shrinkage is
to obtain regularized effects (b̃) to approximate β by accounting

for inflation. To account for inflation in effects, a shrinkage meth-
od is usually approached via regularization in regression or
Bayesian priors. For instance, gene-1 (Cheng et al. 2020) used elas-
tic net (Enet) (Zou and Hastie 2005), a popular regularized regres-
sion method, to shrink the effects (see Supplemental Methods
S1.3). Also as noted earlier, fine-mappingmethods are closely relat-
ed to this task, although they prioritize identifying likely causal
variants, namely, variants with nonzero effects, over providing ac-
curate estimations of their effect sizes (if provided).

We approach effect size shrinkage by framing it as a supervised
learningproblem, training a feed-forwardNNto predict β. The input
data to NNs consist of observed effects b̂ [ Rm and standard errors
se∈Rm forGWA results onm variants, aswell as LDbetween pairs of
variant stored in anm×mmatrix R. For a specific variant, its feature
input to the models is constructed from its summary statistics and
the summary data of the top T variants in highest LD to it (see
Methods; SupplementalMethods S1.2). True effects β are the target-
ed output (Supplemental Fig. S1). Because we need ground-truth ef-
fects for training supervised learning models, which are most often
not available fromgenetic studies, we simulate synthetic association
data for training (see Supplemental Methods S1.4).

Association clustering

ML-MAGES clusters the nonzero variants based on distributions of
their regularized effects (b̃) that are assumed to be zero-centered,
in which clusters represent different types of associations to the
trait(s). In thework of Cheng et al. (2020), gene-1works with the ef-
fects of a single trait by fitting a zero-mean K-mixture model to clas-
sify variants as associated, nonassociated with spurious signals, or
nonassociated with zero effects. ML-MAGES generalizes the single-
trait, K-mixture clustering from gene-1 to a more flexible multivari-
ate infinite-mixturemodel for association clustering, which likewise
distinguishing between variants prioritized and nonprioritized for
analyzing association patterns downstream. This allows ourmethod
to simultaneously analyzemultiple traits and accommodate an arbi-
trary number of variant effect clusters (see Methods; Supplemental
Methods S1.8). Overcoming the limitations of K-mixture models,
our infinite mixture model (Supplemental Fig. S2) automatically
captures diverse multitrait association patterns by inferring the
number of clusters directly from the data.

Gene-level analysis

Combining results from SNPs in each gene enables examination of
association patterns at the gene level. Gene-level signals can be

Figure 1. Workflow of ML-MAGES for assessing the associations of variants with multiple traits.
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compared with existing biological knowledge and offer insights
into the genetic pathways underlying the traits. For a single trait,
we adopt the enrichment test used by gene-1 (Imhof 1961;
Davies 1980; Liu et al. 2009; Cheng et al. 2020). In the multitrait
context, although no single test statistic is available, we character-
ize gene-level signals by analyzing the distribution of variant ef-
fects in each cluster, both visually and quantitatively (see
Methods; Supplemental Methods S1.10).

Performance comparison on simulated data

We benchmarked our NN shrinkage method against elastic net
(Enet) (Zou and Hastie 2005), and the two fine-mappingmethods,
FINEMAP (Benner et al. 2016) and SuSiE-RSS (Wang et al. 2020; Zou
et al. 2022), using simulated data. For multitrait analyses, we also
included MTAG (Turley et al. 2018) as a comparison, using its
trait-specific effects for downstream analyses even though it serves
a different objective and does not account for LD. Because these
methods are computationally intensive, analyses were partitioned
into tasks on approximately independent LD blocks from a chro-
mosome (Supplemental Methods S1.5; Berisa and Pickrell 2015).

We implemented and compared six NN model configura-
tions: the combinations of three different feature sets (using
T = 5, 10, and 15 variants in highest LD to the focal variant in
Eq. 2) and two architectures (with two and three hidden layers).
We also benchmarked against an NNmodel with no hidden layers
(LINEAR) to demonstrate the advantage of capturing nonlinearity.
For robustness, we employed ensemble learning, averaging
the outputs of 10 models of the same architecture trained on ran-
dom data subsets. All results presented hereafter are from the en-
semble-averaged outputs. We trained and validated our models
using data simulated from UK Biobank genotypes on Chromo-
somes 18–22 and evaluated performance on a held-out test set
from Chromosome 15 (for simulation details, see Supplemental
Methods S1.4). Throughout simulation analyses, we use the term
“causal variants” to refer to those with a nonzero true effect. How-
ever, note that in practice, establishing the causality of a variant is
a complex process; therefore, when analyzing real date, we
describe variants as being “associated” with a trait rather than
causal.

In simulation analyses, our effect size shrinkage models dem-
onstrate substantial improvements in efficiency (Supplemental
Table S5)while achieving comparable or superior accuracy in effect
size estimation (Fig. 2; Supplemental Figs. S3, S4, Supplemental
Tables S1, S2). As all six NN configurations performed similarly,
we focus on the results for two representative models: the two-lay-
er and three-layer networks using T=15 variants for feature con-
struction (ML-MAGES 2L and 3L). Full results are provided in the
Supplemental Materials (Supplemental Tables S1–S4).

Estimating true SNP-level effects

We first evaluated each method’s effect size shrinkage perfor-
mance at the SNP level using two metrics: estimation accuracy
via the root mean squared error (RMSE) between the regularized
(b̃) and true (β) effects, and the ability to rank truly associated var-
iants over nonassociated ones via precision-recall curves (PRCs), in
which a curve closer to the upper-right indicates better perfor-
mance. The results are shown in Figure 2, A and B.

Our ML-MAGES models identify truly associated variants
with PRC comparable to SuSiE and better than the others. The
sharp decrease in precision at small recall is an expected conse-
quence of the highly imbalanced data (<1.5%of variants were sim-

ulated with a nonzero true effect). Furthermore, our models
outperformed all other methods in the accuracy of effect size esti-
mation. As a fine-mapping method, SuSiE performs well at
prioritizing causal variants from a small region, which is our sim-
ulation scenario, but is not designed to accurately estimate their ef-
fects. The other fine-mapping method, FINEMAP, performed
worse than SuSiE even at identifying causal variants. MTAG also
performed poorly, which is unsurprising as it is not designed for
effect size shrinkage. In particular, the undesired performance of
the LINEARmodel underscores the benefit of capturing nonlinear
relationships in effect size shrinkage.

A key advantage of our NN-based shrinkage is its computa-
tional efficiency and scalability. On a test set with about 15,000
variants split into 17 LD blocks (based on Chromosome 15), our
method (∼3 sec) was >30× faster than Enet (∼88 sec) and 70× faster
than SuSiE (∼210 sec). A similar speed advantage was observed on
smaller test regions with 1000 variants (ML-MAGES: ∼1 sec; Enet:
∼5 sec; SuSiE: ∼2 sec) (for a full list of times and variance, see
Supplemental Table S5). This advantage becomes more significant
when analyzing larger and denser chromosomal segments in prac-
tice, as our method’s runtime scales linearly with data size. Even
considering the one-time training cost, which takes a few seconds
per epoch for fewer than a hundred epochs on our simulation data
(Supplemental Table S6), our NN models remain most efficient
overall.

Prioritizing associated genes via single-trait enrichment

We then conducted single-trait gene enrichment tests by aggregat-
ing SNP-level effects and assessed the power for identifying associat-
ed genes at a significance level of P=0.05 (Imhof 1961; Davies 1980;
Liu et al. 2009), corrected for an false-discovery rate (FDR) at 0.05
(Benjamini and Hochberg 1995). We calculated F-score and used
the negative log P-values from our enrichment tests to generate
PRCs (Fig. 2C,D). Our NN models show the best overall perfor-
mance. Both SuSiE and Enet achieve comparable PRC performance.
The potentially overestimated SNP effects produced by SuSiE are still
sufficient to identify the correct causal genes upon aggregation, and
Enet likely captures partial signal within causal genes without pin-
pointing the exact causal variants. Both methods, however, show
a less favorable F-score, which is also reflected in their underlying
precision and recall values (Supplemental Table S3).

Characterizing multitrait associations of genes

We evaluated the performance of multitrait gene-level analysis us-
ing simulated bivariate data. By examining the variance-covari-
ance matrix from Gaussian mixture clustering, we classified
variant clusters as trait specific, shared, or nonprioritized (i.e., hav-
ing near-zero effects after shrinkage). For each gene, we then
summed the absolute effects of its variants within the trait-specific
and shared clusters. These sums were ranked against the simulated
ground truth. To quantify howwell eachmethoddistinguished be-
tween association types, we used average precision (AP), which ap-
proximates the area under the PRC (Fig. 2E–G). A higher AP
indicates better performance.MTAG gave amoderate performance
in identifying trait-specific genes and a poor performance in iden-
tifying shared associations. The observed performances were ex-
pected given that MTAG’s joint analysis was designed to provide
trait-specific effects (not controlled for inflation) and that this
evaluation focused on the relative rank of effect sums rather
than the exact effect sizes. Overall, ML-MAGES performs the best
in distinguishing genes with different multitrait associations.

ML-MAGES for multitrait association analyses
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We extended our analysis to a more complex three-trait sim-
ulation. In this scenario, we simulated genes with various effect
patterns: trait-specific associations, shared associations between
two traits, and shared associations across all three. Across SNP-lev-
el, univariate gene-level, and multivariate gene-level analyses, our
method’s performance remained consistent with the results from
the two-trait scenario. The results are included in Supplemental
Figure S3.

Model robustness to training data variation

We performed additional analyses to assess the robustness of our
models’ performance under differences between training and eval-
uation data.

To evaluate how the models perform when the assumed
genetic architecture in simulation is misspecified, we generated
different genetic architectures by varying parameters in our
simulation of effect sizes. Specifically, we varied parameters s and
w in Equation 10. These exponents control the influence of a var-
iant’s allele frequency (governed by s) and LD score (governed by
w) on the variance of its simulated effect size (see Methods;

Supplemental Methods S1.4). For example, when w = −1, nontriv-
ial relationships arise between effect size and a variant’s LD score,
which aligns with the weighting scheme in LDAK models (Speed
et al. 2012, 2017).When s=0, effect sizes are independent of allele
frequencies. To assess robustness, we trained our NNmodels on ef-
fects simulated under one parameter setting (s=−0.25, w=0), the
one we used throughout our analyses, and evaluated them on
both this setting and three alternatives: s=0, w=0; s=0, w = −1;
and s=−0.25, w=−1. The results are shown in Supplemental
Figure S5. The models performed consistently across these simula-
tion settings, indicating its robustness to genetic architecture var-
iation in simulations. This stability suggests that the model is
effective even when genetic architecture assumptions do not per-
fectly match the underlying truth.

We also performed a cross-chromosome validation to evalu-
ate the models’ sensitivity to differences between chromosomes
used for simulating the training data. We separately generated a
training set composed of 100 simulations for each setting based
onChromosomes 13, 14, 16, and 17 and a validation set composed
of 100 simulations each based on Chromosome 15. We trained
and validated a new set of models on these data and then applied

A C E

F

G

B D

Figure 2. Our methods ML-MAGES 2L and 3L outperform other methods in effect size shrinkage in simulation analysis. (Left) SNP-level performance:
comparing the regularized effects and the true effects of each simulation. (Center) Gene-level univariate performance: comparing univariate enrichment
test with the simulated ground truth. (Right) Gene-level bivariate performance: comparing aggregated effect at the gene level based on bivariate associ-
ation clustering output with the simulated ground truth. Legends shown in A apply to all panels; violin plots are ordered from left to right as Enet, SuSiE,
FINEMAP, MTAG, LINEAR, ML-MAGES 2L, and 3L. Violin plots are labeled with the significance level of Welch’s t-test for difference between our methods
and Enet and SuSiE, as shown in the legends of B. (A) Precision-recall curve (PRC) averaged across all 200 simulations (by interpolation), in which the pos-
itives are the true nonzero effects and the precision-recall pairs are obtained by thresholding |b̃|. (B) RMSE between β and b̃. (C) PRC averaged across all 200
simulations (by interpolation), in which the true positives are the truly associated genes and the precision-recall pairs are obtained by thresholding negative
log of P-values from enrichment tests. (D) F-score of identifying associated genes, where genes with an FDR-adjusted P<0.05 from the enrichment test is
identified as associated. (E,F) Trait-specific average precision (AP) for identifying genes with trait-specific association to simulated traits 1 and 2, when rank-
ing genes by the sum of absolute effects of variants in trait-specific clusters and comparing against genes being truly trait-specific. (G) AP for identifying
genes associated to both traits, when ranking genes by the sum of absolute effects of variants in clusters of shared association and comparing against genes
being truly associated to both traits.
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them to the previous validation data based on Chromosome 20.
The effect size shrinkage performance, as measured by both the
PRC of ranking truly association variants correctly and the RMSE
between regularized and true effects, was only slightly worse
than that of the originalmodels (Supplemental Fig. S6), suggesting
that our model is not sensitive to the specific chromosomes used
for generating training data.

Application to real data

Application to quantitative traits: HDL and LDL cholesterol

To get a comprehensive understanding of how different shrinkage
methods affect gene-level analysis, we analyzed GWA effects ob-
tained via PLINK2 (Chang et al. 2015) of two quantitative traits
from the UK Biobank (Sudlow et al. 2015): high-density lipopro-
tein cholesterol (HDL) and low-density lipoprotein cholesterol
(LDL). The data included 489,953 variants from 334,851
European ancestry individuals (see Supplemental Methods S1.1).
We show the results for Enet, SuSiE, and ML-MAGES in Figure 3
(panels C and D are based onML-MAGES (2L) only). The methods
LINEAR and FINEMAP were excluded owing to their poor perfor-
mance in our simulation analyses. Additionally, we examine
MTAG’s output for comprehensiveness and performed association
clustering on its output effects from the joint analysis of two traits
(Supplemental Fig. S7). The results neither shows shrinkage nor
distinguishes trait-specific versus shared associations, which was
expected as these tasks are not the target of MTAG, so we also ex-
cluded it from all downstream analyses.

We performed gene enrichment test on each of the two traits
separately using their regularized effects and association clustering
output. We referred to the GO knowledge base (Ashburner et al.
2000; Aleksander et al. 2023) for information on genes related to
biological processes of HDL and LDL and used this established in-
formation (Chen et al. 2013) to validate our results (Fig. 3C,D).
Enet and the two NN methods ranked a very similar set of genes,
most of which are known to be involved in relevant biological pro-
cesses. In contrast, SuSiE did not capture some top genes, and this
poor performance is consistent with simulation results (Fig. 2).We
hypothesize that Enet was comparable to NN methods in enrich-
ment tests because it retains at least some variants with nonzero ef-
fects in strongly associated genes, which likely explains its strong
performance in Cheng et al. (2020).

From multitrait analysis, we were able to identify genes with
different association patterns (Fig. 3E–I). The inferred Gaussians
(Fig. 3F) clearly distinguish between variants with trait-specific as-
sociations (e.g., clusters 2–5) and those with shared associations
(e.g., cluster 1, showing weak negative correlation between traits).
Gaussian mixture components with small Tr(Σk) (i.e., clusters la-
beled “rest”) are nonprioritized, similar to the spurious association
identified by the univariate gene-1 method. We categorized prior-
itized clusters into three types (SupplementalMethods S1.10): spe-
cific to HDL, specific to LDL, and a third category for shared or
strong trait-specific effects.

The fraction of a gene’s variants in each category and their
normalized sum of effect products (Fig. 3G,H) suggest its associa-
tion type. For example, the PCSK9 and LDLR genes showed pre-
dominantly LDL-specific associations. However, some clusters
can be ambiguous. For example, cluster 1 in Figure 3F contains
both large trait-specific effects and shared effects, which compli-
cates the interpretation of genes like LPL, which is known to be
LDL specific but nevertheless dominated by this cluster. In such

cases, a careful examination of the shape of the cluster’s covariance
ellipse (Σk) can help refine the cluster categorization and warn
against this ambiguity. Despite occasional ambiguity when a sin-
gle cluster contains mixed association types, our association clus-
tering method captures significantly richer information than
standard single-trait gene-level tests.

The univariate enrichment test only uses a SNP-level null
threshold value obtained from the clustering results and primarily
identifies genes with large trait-specific fractions (Fig. 3I), poten-
tially overlooking weakly associated genes and failing to fully uti-
lize all SNP-level information. Instead, our multitrait analysis is
able to bring more information from the SNP-level effects to the
gene level (Fig. 3G,H) and capture signals for shared associations,
helping locate genes potentially of interest for the study of their
trait-specific versus pleiotropic contributions. As the number of
traits and the complexity of their association patterns grow, al-
though direct visualization becomes infeasible, our methodwould
become particularly advantages at automatically inferring these
patterns and highlighting them in gene-level summaries.

Application to binary traits

To test the generalizability of ML-MAGES, we applied it to the
GWA results of two binary traits in the UK Biobank data: malig-
nant neoplasm of breast (C50) and acquired absence of breast
(Z90.1), both ICD10-coded diseases. We used the log odds ratios
as variant effects. As with the quantitative traits, association clus-
tering successfully categorizes trait-specific and shared-association
clusters; in this case, the shared-association cluster exhibited a
slight positive correlation (Fig. 4A,B). ML-MAGES identifies two
significant genes that have shared associations with both diseases,
FGFR2 and TOX3, suggesting a likely similarity in their biological
underpinnings. These two genes show the largest normalized
sum of effect products and exhibit very similar patterns in the frac-
tion of variants belonging to each cluster (Fig. 4C,D). This finding
aligns with the work of Cortes et al. (2020), who also associated
these genes with nearly identical nodes in the ICD-10 ontology.
The specific variants they pinpointed (rs2981575 and rs4784227)
both fall within the shared-association cluster identified by our
method.

Discussion
GWA studies have been powerful tools for understanding the ge-
netic architecture of complex human traits (Visscher et al. 2017;
Uffelmann et al. 2021). We introduced ML-MAGES, a computa-
tionally efficient and effective machine learning framework for
multitrait association analysis, to address two open challenges:
the inflation in GWA effects caused by LD, and the detection of
shared associations missed by single-trait analyses. Our NN-based
shrinkage achieves higher accuracy in approximating the true
SNP-level effect sizes compared with the regularized regression
(Cheng et al. 2020) and fine-mapping (Zou et al. 2022) methods
(Fig. 2A,B) and is more computationally efficient (Supplemental
Table S5), which in turn improves the categorization of gene-level
signals in the simulated data (Fig. 2C–G). By generalizing gene-1’s
univariate clustering (Cheng et al. 2020) to a multivariate scenario
and using an infinite mixture model solved by variational infer-
ence, ourmethod enables the exploration of complexmultitrait as-
sociation patterns. Our method aggregates SNP-level effects and
association clustering results at the gene level, providing intuitive
summaries that reveal various association patterns (e.g., the
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geometry of theGaussian ellipses and the proportion of variants in
each cluster) (Fig. 3D–G),which offers both quantitative and visual
interpretations of the underlying multitrait signals.

Amajor drawback of using supervised learning for shrinkage is
its reliance on simulated data for model training. Generating simu-
lations requires access to individual-level genotypes, and synthetic
GWA effects need to be similarly distributed as real ones. These im-
pose limitations on the generalizability of the models across differ-
ent contexts; for instance, a model trained on European-based data
will likely perform less effectively in other populations, as is com-
monly observed in genetic studies (Popejoy and Fullerton 2016;
Sirugo et al. 2019; Martin et al. 2020). Additional simulation anal-
yses show that supervised learning-based shrinkage outperforms

Enet even when the training and evaluation simulations are
generated using different real data or under different simula-
tions settings, given that the effect size distributions match
(Supplemental Figs. S4–S6). We included the option to transform
data to both symmetric or asymmetric Laplacian distribution to
partially accommodate the case when effects may not be centered
around zero. Still, performance of the models can be compromised
if the simulated training distribution does not match the target
trait’s distribution. In practice, the distribution of GWA effects
may vary substantially across traits. Although our data transforma-
tion reflects a distribution common among some popular UK
Biobank quantitative traits, for traits with markedly different effect
distributions, we recommend retransforming the simulation data

B D

F

E

H

G

I

A C

Figure 3. ML-MAGES identifies known genes with shared and trait-specific associations for high-density lipoprotein cholesterol (HDL) and low-density
lipoprotein cholesterol (LDL) in the UK Biobank. We analyzed GWA of two traits: HDL and LDL. Panels C and D include results from four methods (Enet,
SuSiE, and ML-MAGES 2L and 3L). For the other panels, only ML-MAGES 2L results are shown. (A,B) The univariate clustering on GWA effects of HDL
and LDL. Clusters are represented by the inferred Gaussian N (0, s2

k ), labeled with their inferred mixing weights πk. (C,D) The −log10(P) value from
gene enrichment tests of HDL and LDL for a list of genes found significant by the test for either of the two traits. Darker color indicates higher statistical
significance, and nonsignificant genes with adjusted P≥0.05 are left blank. Associated genes that have related biological processes terms in the GO da-
tabase (Ashburner et al. 2000) have colored labels. Unlike the other three methods, SuSiE shrinkage fails to identify some most relevant genes. (E) Variants
plotted by their regularized effects on HDL and LDL, with color and style denoting their cluster assignment from association clustering. Clusters are ordered
in descending Tr(Σk). The proportion of variants with nonzero effects in each cluster is labeled in the legend. Clusters beyond those listed are categorized as
nonprioritized associations and grouped into the “rest.” (F) Inferred mixtures from bivariate clustering, shown as covariance (Σk) ellipses from Gaussian
mixtures, with inferred mixing weights πk labeled in the legend. (G) The fraction of variants assigned to each of the genes listed in panels C and D that
belong to each type of association clusters. (H) Normalized sum of squared effects or sum of effect products of variants in each gene, calculated as
(
∑

i[g b̃ip1 b̃ip2 )/|g|, where g denotes the set of variants assigned to a gene with variants indexed by i, and p1 and p2 index the two traits. Three sums
are considered: two trait-specific sums of squared effects and the sum of effect products for shared associations. (I) −log10(P) of single-trait enrichment
test for each of the two traits, corresponding to the color-coded values in third rows of panels C and D.
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to match the actual empirical distribution and retraining the mod-
els, which requires only a coupleminutes. Nevertheless, adaptively
generating realistic synthetic data remains challenging in genetic
studies, and further advancement in simulation strategies would
benefit our method as well.

Another limitation of our method is the difficulty in inter-
preting results of multivariate clustering. As observed from our de-
monstrative example, a locally optimal cluster sometimes groups
variants with different types of effects together, for example,
some being putatively pleiotropic and some having large trait-spe-
cific effects (Fig. 3E, cluster 1). The inferred Gaussian instead sug-
gests weak negative correlation between traits (Fig. 3F), which
can complicate the interpretation of genes like LPL that are domi-
nated by this cluster. We need to be careful when designating the
association type of the clusters; although examining the shape of
the covariance ellipse (Σk) can refine cluster categorization and
help detect these patterns, such visualization is not always feasible.
Visualizing clusters becomes particularly challenging when ana-
lyzing more than two or three traits. Methods to intuitively sum-
marize and present the clustering results, especially for high-
dimensional data, would be beneficial. Formulating multivariate
null hypotheses to develop corresponding multitrait association
“enrichment tests” can also help, as well as other analyses of the
association clustering results. For example, calculating a cluster-
specific, polygenic-score-like measure for each individual and
comparing it to the trait values would help quantify the genetic li-
ability contributed by different association patterns, as would esti-
mating the partitioned heritability contributed by SNPs in each
cluster.

Analyzingmultiple traits simultaneously offer notable advan-
tages over single-trait approaches byuncoveringpotential pleiotro-
pic effects, which can inform therapeutic hypotheses regarding

multiple diseases or medical conditions. Identifying various types
of genetic associations among traits provides a comprehensive un-
derstanding of genetic factors influencing them, whether or not
the traits have similar characteristics. Our multivariate approach,
ML-MAGES, performs comparably to univariate ones for studying
trait-specific signals yet reveals additional patterns when correla-
tions between traits exist. Beyond analyzing different traits, the
framework canalsobeused to studygroup-specific versus sharedas-
sociations across groups (e.g., different sexes or disease onsets).
With its improved efficiency and expanded functionality enabled
by machine learning techniques, our method is a complementary
advance to single-trait GWA analyses.

Methods

Effect size shrinkage as a supervised learning task

The goal of effect size shrinkage is to obtain regularized effects b̃ ≈
b by accounting for inflation caused by correlations. The number
of truly causal variants, that is, those with βj≠0, is usually limited,
even for highly polygenic traits. Shrinkage methods encourage
sparsity in b̂ by introducing b̃j ≈ 0 for nonassociated SNPs. This
is similar to variable selection in high-dimensional data, making
regularized regression a popular choice for this task. For example,
gene-1 (Cheng et al. 2020) uses Enet (Zou and Hastie 2005).
However, because regularized regression has O(m2) input space,
the algorithm can quickly become computationally infeasible as
the number of variants (m) increases. Moreover, the method as-
sumes linear relationships between true and inflated genetic ef-
fects, which may not hold true in practice. To overcome the
inefficiency of regularized regression and its limitation in handling
nonlinearities, we approach effect size shrinkage via a supervised
learning task using feed-forward NNs.

B

A C

E

A

D

Figure 4. ML-MAGES’s association clustering and gene-level signals highlight genes with shared associations across two binary traits in the UK Biobank.
Two traits are malignant neoplasm of breast (C50) and acquired absence of breast (Z90.1). The two genes highlighted in the figure, FGFR2 and TOX3, are
those identified by Cortes et al. (2020) as showing similar biological pathways. The figure style follows that of Figure 3, E–I. (A) The bivariate clustering
results based on regularized effects of two traits. (B) Inferred mixtures from bivariate clustering, shown as covariance ellipses with inferred mixing weights
πk. (C ) Fraction of variants in each gene that belong to each type of clusters. The genes listed have at least 10 variants and >20% of variants from one of the
prioritized clusters. (D) Normalized sum of effect products of variants in each gene. (E) Single-trait enrichment test −log10(P) for each trait.
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Model objective

Our supervised learning formulation uses summary statistics and
LD to construct feature input, denoted as Ω. True effects β are
the targeted output. The model is trained by minimizing the
mean squared error (MSE) between β and the regularized, predicted
effects (b̃). The model objective is

min
f

‖b− ff(V)‖22 /m, (1)

where ff(·) is the function represented by NN, ϕ is the set of net-
work parameters to optimize over, and m is the data size. With
trained model parameters ϕ∗, regularized effects are b̃ = ff∗ (V).

Feature design

We hypothesized that the inflated effect size of a focal variant is
primarily driven by other variants most strongly correlated with
it. Therefore, we constructed the input features for a given variant
using summary statistics from the top T variants in highest LD to
it. Features for variant j are constructed as

Vj = [b̂j, sej, ℓj, b̂r1 , b̂r2 , . . . , b̂rT , Rjr1 , Rjr2 , . . . , RjrT ], (2)

where b̂j is the observed effect, sej is the standard error, ℓj is the LD
score of the variant j, and r1, …, rT denote the indices of the top T
variants in highest LD to variant j. The LD score ℓj is the sumof var-
iant j’s squared correlations with all other SNPs. There are 2T+3
features for each variant. Because T≪m, the O(Tm) input space
is a great reduction from that of regularized regression approaches
(O(m2)) (see Supplemental Methods S1.3).

NN architecture and training

We proposed two NN architectures, differing in their model com-
plexity: one contains two hidden layers, and the other one con-
tains three. We also varied the input feature size through varying
T. Additionally, we considered a network consisting of only the
output layer as a “linear” model to investigate the importance of
capturing nonlinear relationships in shrinkage. Detailed architec-
tures and training settings are in Supplemental Methods S1.6 and
Supplemental Figure S1.

We generated synthetic data for model training and evalua-
tion. Specifically, we sampled true nonzero effects from a normal
distribution under a flexible variance model that incorporates al-
lele frequency and LD. The simulation parameters includes a factor
s controlling the influence of allele frequency on the variance
through heterozygosity, a factor w controlling the dependence of
variance on LD score of the variants, the proportion of SNPs desig-
nated as causal, and the narrow-sense heritability of a synthetic
trait (see Supplemental Methods S1.4). We then simulated syn-
thetic trait values using an additive model (Cantor et al. 2010;
Uffelmann et al. 2021), as in Cheng et al. (2020), from which we
obtained GWA effects and transformed them to match the empir-
ical effect size distributions observed in real data.

Association clustering based on effect size distributions

In work by Cheng et al. (2020), the K-mixture model was tested
with a range of K values and the optimal K reported sometimes
equals the largest one, suggesting that a higher K possibly fits
the data better. ML-MAGES uses an infinite-mixture of multivari-
ate Gaussians to cluster the nonzero variants after effect size
shrinkage, automatically inferring the number of clusters and
overcoming this limitation. This is particularly helpful for multi-
trait analysis as the complexity of association patterns grows
quickly with the number of traits.

We restricted clustering to variants that have nonzero effects
for any of the p traits. Let b̃ [ Rm×p be the effects ofm variants on p
traits. The clustering input is γ∈RJ×p, where

gi [ {b̃j [ Rp|b̃j å0 for j = 1, . . . , m} (3)

are the J variants with nonzero effects for any of the p traits, with
J <m.

Let zik∈ {0, 1} be the latent indicator variablewith zik= 1 if var-
iant i belongs to cluster k and 0 if not. LetN (m, A−1) be a multivar-
iate normal withmean μ and covariance A−1 or, equivalently, with
precision A. Cat(π) denotes a categorical distribution parameter-
ized by π.

The zero-mean infinite-mixture model is

gi �
∑1

k=1

pkN (0, A−1
k ), zi � Cat(p), pk = vk

∏k−1

ℓ=1

(1− vℓ), (4)

where πk denotes the probability that γi is from cluster k, with 0< πk
≤1 and

∑1
k=1 pk = 1. The mixture weights {πk} are derived from the

stick-breaking construction of a Dirichlet process (Sethuraman
1994; Blei and Jordan 2006), where vk � Beta(1, a). We estimated
model parameters using variational inference (for step details,
see Supplemental Methods S1.7, S1.8; Supplemental Fig. S2;
Jordan et al. 1999; Wainwright and Jordan 2008; Nickl 2020).

Each inferred cluster is a zero-meanGaussianwith covariance
Sk = A−1

k . The clusters are first ordered by decreasing πk values. An
optimal number of clusters, K∗ (K∗ ≤K), is determined by trun-
cating K at a reasonably large value such that

∑K∗
k=1 pk ≈ 1. The

remaining K∗ clusters are then ordered decreasingly by Tr(Σk).
When p=1, this is equivalent to the ordering used by gene-
1: s2

1 . · · · . s2
K∗ .

Gene-level analysis

Effect size shrinkage and association clustering results of variants
in each gene were combined for gene-level signals. When number
of traits p=1, we adopted the single-trait enrichment test used by
Cheng et al. (2020; see Supplemental Methods S1.9). For higher p,
the covariance ellipse (Σk) of a Gaussian mixture component pro-
vides a geometric interpretation of the association pattern. For ex-
ample, if the major axis of a cluster falls close to a Cartesian axis
and is much longer than all other axes, the cluster is “trait specif-
ic,”with variants strongly associated to one trait but not the other.
If Tr(Σk) is large and the angle of the major axis to any of the
Cartesian axes is large, the cluster likely contains shared associa-
tions. If Tr(Σk) is small, the cluster has nonprioritized associations.
We computed fractions of variants in each gene from different
types of clusters (see Supplemental Methods S1.10). Genes with
large shared-association fractions are putatively pleiotropic. We
also calculated the normalized sum of products of SNP effects
across traits in each gene as

Sg = (1/|g|)
∑

i[g

b̃
T
i b̃i, (5)

where g is the set of variants in a gene, and b̃i of size |g| × p are their
effects. Having large (or small) values in different entries of matrix
Sg indicates different association relationships and strengths. For
example, if a gene is trait j specific, Sg( j, j) would be large, whereas
Sg ( j

′, j′) for j′ = j is small. A gene with large Sg (j, j
′) is likely associ-

ated to both traits with positive correlation.

Software availability

The source code is available at GitHub (https://github.com/
ramachandran-lab/ML-MAGES) and as Supplemental Code. The
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repository includes example data and scripts with instructions to
run the program, to visualize the results, and to reproduce sum-
mary-level and simulation data. All summary-level and simulation
data generated in this study are available at Zenodo (https://doi
.org/10.5281/zenodo.17215974).
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