Journal of Statistical Theory and Applications (2025) 24:469-488
https://doi.org/10.1007/544199-025-00118-x

RESEARCH ARTICLE

®

Check for
updates

BetaExplainer: A Probabilistic Method to Explain Graph
Neural Networks

Whitney Sloneker' ® - Shalin Patel?® - Hung-Jen Wang?®3 - Lorin Crawford'* -
Ritambhara Singh'?

Received: 13 December 2024 / Accepted: 2 May 2025 / Published online: 3 June 2025
© The Author(s) 2025

Abstract

Graph neural networks (GNNs) are powerful tools for conducting inference on
graph data but are often seen as “black boxes" due to difficulty in extracting mean-
ingful subnetworks driving predictive performance. Many interpretable GNN meth-
ods exist, but they cannot quantify uncertainty in edge weights and suffer in pre-
dictive accuracy when applied to challenging graph structures. In this work, we
proposed BetaExplainer which addresses these issues by using a sparsity-inducing
prior to mask unimportant edges during model training. To evaluate our approach,
we examine various simulated data sets with diverse real-world characteristics. Not
only does this implementation provide a notion of edge importance uncertainty, it
also improves upon evaluation metrics for challenging datasets compared to state-
of-the art explainer methods.

Keywords Deep learning - Graph neural networks - Probabilistic models -
Explainability - Variational inference

P< Whitney Sloneker
whitney_sloneker @brown.edu

P4 Ritambhara Singh
ritambhara_singh@brown.edu

Center for Computational Molecular Biology, Brown University, Providence, Rhode Island,
USA

Department of Computer Science, Brown University, Brown University, Providence,
Rhode Island, USA

Department of Applied Mathematics, Brown University, Providence, Rhode Island, USA

Microsoft Research, Cambridge, Massachusetts, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s44199-025-00118-x&domain=pdf
http://orcid.org/0000-0002-5955-1507

470 Journal of Statistical Theory and Applications (2025) 24:469-488

1 Introduction

Relational data occur in a variety of domains, such as social graphs [1], chemical
structures [2], physical systems [1], gene-gene interactions [1], and epidemiologi-
cal modeling [3]. These data are best represented by graphs that effectively model
their relationships, such as chemical bonds in drug molecules that affect toxicity or
treatment efficacy [1], or personal interactions in social networks indicating contact
[2]. Although graph information represents these datasets more accurately by incor-
porating node features (i.e., chemical weight for molecules) and node interactions
through edges (i.e., chemical bonds) [1], large-scale modeling to learn their patterns
can be challenging if the graphs are complex [4, 5].

Embedding methods such as Graphlets [6] and DeepWalk [7] were developed to
address these challenges. However, they may oversimplify complex graphical fea-
tures by summarizing the graph and ignoring node features [8]. As a result, graph
neural networks (GNNs) have been widely adopted in the machine learning commu-
nity to model graph-based datasets because they incorporate edge structure and node
features directly [9, 10].

GNN models have broad applications, such as capturing the complexity of traf-
fic dynamics, approximating NP-hard graph combinatorial analysis, and learning
real-world graphs such as molecule structures [1]. However, like other deep learn-
ing models, they can be difficult to explain [11]. It is challenging to extract impor-
tant edges that the GNN learns to make accurate predictions [11]. Determining
these important edges is needed for hypothesis development [11], such as answering
“what chemical bonds might determine the prediction of toxicity in a molecule?”, or
“what features indicate email spam?” [12]. As a result, it is critical to develop GNN
explanation methods to understand the model predictions that highlight the impor-
tant edges of the graph.

Many methods have been created to explain GNNS, that is, highlight the impor-
tant edges for predictions, but their performances vary widely depending on the
underlying properties of the data or the GNN model. For example, gradient-based
explainability methods struggle to produce accurate edge explanations when deep
learning models experience gradient saturation [13]. Transformer models such as
Graphormer [14] and GraphTrans [15] perform well, but must be specifically chosen
as layers for GNN classification prior to training the model. Thus, they only explain
models that have already incorporated transformer-based architectures. Data proper-
ties can also influence the explainer’s performance. A recent benchmark study [16]
found that many methods (Grad [17], GradCAM [18], GuidedBP [19], Integrated
Gradients [20], GNNExplainer [21], PGExplainer [22], SubgraphX [23], and PGM-
Explainer [24]) struggle against challenging data properties. For example, if the
underlying graph of the data is heterophilic! or a low proportion of node features are
critical for classification, the existing explainer methods struggle to produce accu-
rate edge explanations from the GNN model.

! A highly heterophilic graph is one where edges tend to connect nodes of different classes. Its opposite,
a homophilic graph, is one in which edges tend to connect nodes of the same class.

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 471

Explanation
GHN Graph
SUNGRGRR Other Explainers =Y O O
e o o o o o 4 ? =
3 ° 3 * / / N
° ® “3 \J
@ L J L J L] L] L] — - —~

W e e-: ©
/ K//‘ — \/7\ —> g /T - /\
O N)OsO /O o=

) =

T2 0O \ O)OO
Ve & =
& 4 BetaExplainer) *\ (7

-/ J
Original Graph Explanation Graph with

Uncertainty Quantification

Fig. 1 BetaExplainer returns a mask for the important edges of a graph for a GNN classification. As it
learns a probabilistic model to represent these important edges, the mask estimates a level of uncertainty
in importance of each edge to the GNN

The study shows that out of all the methods examined, only GNNExplainer,
PGExplainer, and SubgraphX function as effective edge explainers for GNN mod-
els [16]. However, PGExplainer often underperforms most methods in generating
accurate edge explanations for the simulated datasets [16]. On the other hand, Sub-
graphX has a robust performance [16]. However, it cannot rank the edge importance
as each highlighted edge is only denoted as O (as unimportant) or 1 (as important)
[13]. This ranking is essential to hypothesis generation as it allows researchers to
focus on the most highly ranked edges, easing downstream analysis. For instance,
in the case of exploring edges representing gene-gene interactions for biological
datasets, edges ranked based on their importance allow us to focus on experimen-
tally confirming only the most likely interactions, saving the time and monetary cost
required for wet lab experiments [25]. Finally, GNNExplainer performs relatively
well on the proposed synthetic datasets [16] while also returning importance scores
that can rank the relevant edges of the GNN model [13]. As a result, SubgraphX and
GNNExplainer best represent state-of-the-art edge explainers for GNNs. Even so,
their struggles to produce accurate edge explanations suggest a knowledge gap for
explainer methods on the tested challenging datasets.

We explored another challenging setting for GNN explainer methods — explain-
ing a GNN model for graph datasets constructed with sparse node features. A data-
set with sparse node features is one where many node features are zeros. Sparse
node feature datasets are common in various real-world domains, especially in the
now-emerging single-cell gene expression data (or scRNA-seq). These datasets
are notoriously sparse, and any gene-gene correlation or interaction graphs cre-
ated from them will result in graphs with low informative node features [26] [25].

@ Springer

472 Journal of Statistical Theory and Applications (2025) 24:469-488

We hypothesize that existing explainers will also struggle to accurately return edge
explanations for the sparse node feature dataset.

We propose a new method, BetaExplainer, that uses a probabilistic distribution to
determine the important edges from a GNN model. BetaExplainer learns a probabilis-
tic edge mask to maximize the similarity of the output of the trained GNN on a masked
graph to its original output through statistical inference to approximate which edges
are most important (Fig. 1). This probabilistic approach allows us to produce edge
importance scores with uncertainty quantification and rank edges by the order of score
confidence. We have evaluated BetaExplainer on seven simulated datasets with various
challenging underlying data properties that explainers struggle to adapt to, including a
heterophilic graph and a sparse node feature dataset. The results demonstrate that Beta-
Explainer significantly outperforms existing methods in being faithful to the underly-
ing graph importance on five out of seven simulated datasets and improves accuracy
compared to state-of-the-art methods on graph datasets with sparse features. Finally, it
can achieve a faithful explanation of a real-world dataset on a small set of edges. It also
conveys a notion of uncertainty in edge importance for its explanations, guiding down-
stream analysis.

2 Methods
2.1 BetaExplainer Algorithmic Framework

Given a trained GNN model f, graph input G = (V, E) with the set of nodes or vertices
defined as V and edges E with edge e;; connecting vertices v; and v;, node features X,
and model output on the input graph and node features fiX, G), we define a Beta dis-
tribution prior P(M) on the edge mask M of the input graph. BetaExplainer learns the
posterior Beta distribution P(M | f(X, E)) of the edge mask by comparing the results of
the masked-out graph G, and a full set of node features or f(X, G,) to the original out-
put on the unmasked graph G and all node features or X, G) (Fig. 2) where the likeli-
hood over the GNN or p(f(X, E)) is a Bernoulli distribution described by

itM > 0.5,
P(FX, E) | M) = {’f_p if M < 0.5, o

Based on the Kullback-Leibler (KL) divergence between the new and original out-
puts, BetaExplainer updates the edge mask probabilities to increase or decrease each
edge importance value in the edge mask as applicable. We optimize evidence lower
bound (ELBO) to learn the final edge mask. This edge mask conveys the importance
of each edge as a probabilistic importance score.

BetaExplainer has two major benefits: (1) using a probabilistic framing allows us to
convey edge importance for easy interpretation and edge rankings while also convey-
ing uncertainty in edge importance, and (2) users may choose distributional parameters
most relevant to the underlying data to improve performance by better representing the
underlying distribution of edge importance. For this work, we choose the Beta distribu-
tion, which is described by

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 473

Original Graph

v Step One:
Trained Trained GNN Results ~ © q,B Initialize Inputs
GNN f(X,6)=[0,0,...,n,n] ~ O Parameters

. Step Two: Train
Update Probabilities & Get New Masked Results BetaExplainer

('j -
O3~V \ - @

. O O GNN Results on Masked Graph "¢ - [1,1,1]
So old ISR R N

YR AA b
O O \/ .. [0.25,0.5,0.75]

Masked min Diu (fX,G)IIf(X,Gs)) D
Graph Minimize Masked Graph GNN & Original -4
GNN Output Differences @, ® [0.10,0.55,0.9]
Masking Process
(Edge Mask: One Probability Per Edge Step Three:
[0.26,0.91,..., 0.45, 0.6] Return Edge Mask

Fig.2 Given a trained GNN, the original graph, and Beta distribution parameters @ and f, BetaExplainer
is trained by learning the masked-out graph minimizing the KL-Divergence Loss between the model
output on the masked-out graph and original graph. It will return the learned edge mask representing a
probabilistic importance score for each edge when complete

M;.;—l(l - M~ 'T(a + p)
C(a)I'(p)

where « and § denote are real valued shape parameters. Here, P(M;; | a,) is the
probability that the mask importance for edge ¢; is value M;. As edges of a graph
can mostly be described by a Bernoulli distribution measuring binary outcomes -
indicating importance or unimportance - the Beta distribution functions as the con-
jugate prior? of the Bernoulli making it a reasonable choice to describe edge impor-
tance uncertainty. Equivalently, if the prior edge importance described by the edge
mask P(M) is a Beta distribution and the distribution P(A | M), indicating whether
each edge is important given the Bernoulli distribution, denotes the mask, then the
posterior distribution of edge importance P(M | A) will also be a Beta distribution.

We assume that the learned Beta distributions for each edge e € E are independ-
ent of each other. Thus, the learned distribution of edge importance for any edge
e; € E is equivalent to its learned importance for the full mask M through mean
field variational inference. Therefore, we may learn the importance of all edges
simultaneously. Thus, the ELBO may be calculated as follows with respect to the
original output:

PM;|a,p) = 2

2 When the prior and posterior distributions come from the same family, it is called a conjugate prior.

@ Springer

474 Journal of Statistical Theory and Applications (2025) 24:469-488

Ellog(P(G,.f(X, G)|M) — log(P(f(X, G)))] 3)
The ELBO is the lower bound for P(G,, f(X, G)|M), or
P(G,.f(X,G)|M) > ELBO 4

This expression indicates that the difference between the two expressions can be no
less than zero and by maximizing the ELBO, the following holds:

log(P(G,.f(X, G)IM) — ELBO = KL(log(P(f(X, G))) || P(G,.f (X, G)IM)) (5)

Maximizing the ELBO indirectly minimizes the KL divergence between the model
output on the masked edges and the original output, learning the optimal mask.
While we could calculate the closed form of the Bayes theorem directly in this case,
we chose to approximate the true distribution with a variational family instead to
increase BetaExplainer’s applicability to large-scale real-world datasets. Thus, Beta-
Explainer’s algorithm is formulated as follows:

Algorithm 1 BetaExplainer Model Set Up

Require: X,G=(V.,E),e;j€eE,a>0,6>0 {Require positive Beta distribution parameters and vertices in the

graph}

Require: c~ f(X,G) {Return model outputs given the input data. }
Z—7 {Define number of training epochs Z as positive integer z}
T—1 {Initialize epoch tracker T for training}
while T'<Z do

a—da,B—p {Update parameters @ and S on the original graph based on the results of the prior
iteration. }
M;j~Beta(a,f)Ve;; € E {Determine edge weights from Beta distribution}
ye—f(X,G,M) {Return the model output on input dataset with generated weights for edges}
¢~y {Compare outputs on weighted dataset to original with KL divergence loss to update parameters }
T—T+1 {Update epoch tracker.}
end while
return M;;Ve;; {Return weights representing edge probabilities over all edges}

BetaExplainer uses the Pyro framework for variational inference to develop the
edge importance model, and the pytorch_geometric framework to train all of
the GNN models used.

2.2 Baselines

Due to methodological similarities, the first baseline we compare BetaExplainer to
is the state-of-the-art method GNNExplainer [21]. GNNExplainer performs well on
various node and graph classification datasets, suggesting it is a strong baseline [13].
While BetaExplainer and GNNExplainer have similar optimization goals, the dif-
ferent training algorithms ensure that BetaExplainer has certain beneficial proper-
ties. GNNExplainer randomly initializes the edge mask and then directly optimizes
the Bernoulli distribution of edge importance, requiring a re-parameterization trick.

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 475

In contrast, BetaExplainer directly shrinks edges by using the black-box variational
inference. Furthermore, GNNExplainer does not directly drop out parameters by
forcing them to be zero; based on the distribution learned, BetaExplainer does this
as needed.

The next baseline we compare BetaExplainer against is SubgraphX [23], because
it is a well-performing edge explainer like GNNExplainer [21]. SubgraphX uses
Markov Chain Tree Search to determine the subgraph that achieves a Shapley value,
suggesting that the model results on the subgraph are similar to the original results.
Although similar to BetaExplainer - both learn the subgraph that returns similar
model results to the initial - it does not allow for a notion of uncertainty[13, 23].

Finally, BetaExplainer gives us access to properties, such as incorporating prior
information through hyperparameters. These priors allow the proposed method to
easily adapt to challenging data properties such as a heterophilic graph or highly
sparse node features. Furthermore, as BetaExplainer directly learns a distribution,
it can convey a notion of uncertainty in edge importance. We hypothesize these fea-
tures will benefit BetaExplainer on challenging datasets.

2.3 Experimental Setup
2.3.1 Datasets

Argawal et al. [16] propose that standardized methods to evaluate GNN explain-
ability lack key characteristics. Limitations include few datasets with a notion of
ground truth needed to measure explainer performance and under-represented real-
world properties. To address these challenges, they developed the ShapeGGen sim-
ulator, which generates a variety of datasets with real-world properties and asso-
ciated known ground truth. This simulator returns a diverse set of graph datasets
given defined parameters. A house-shaped motif makes up the ground truth (i.e., all
important edges) and generates 1200 subgraphs. Once generated, these subgraphs
are connected so that each node has one or two ground truth motifs in its 1-hop
neighborhood.? The node’s class of two is determined by the number of motifs in
this neighborhood (zero if there is one motif and one if there are two). This structure
makes up the first dataset with no challenging properties, SG-BASELINE, and all
remaining graphs are some modification of this baseline.

The graphs with challenging properties are created by modifying one property of
SG-BASELINE at once. Where the baseline graph is homophilic, in this case, indi-
cating that nodes sharing an edge tended to contain the same number of motifs in
their neighborhood and thus are of the same class, a graph can also be heterophilic.
For the ShapeGGen simulator datasets, a heterophilic graph would be one where
it is more likely that nodes with one motif in their 1-hop neighborhood will con-
nect to nodes with two motifs in their 1-hop neighborhood. The second potentially

3 A node’s I-hop neighborhood is the set of nodes whose shortest path to the original node contains no
more than [edges.

@ Springer

476 Journal of Statistical Theory and Applications (2025) 24:469-488

challenging property is based on how correlated node class is to protected node fea-
tures and how likely these features will be flipped. If not altered, it is assumed there
is no correlation, and there is a 50% likelihood the simulator would flip them. This
setting ensures that the graph is entirely fair* since there is no added node feature
bias which would affect the model but not actual node class [16]. Finally, the pro-
portion of informative node features - or features correlated with the node class - to
the total number of features may change where the baseline proportion of important
features to total features is 4:11. The simulator may increase or decrease this ratio.

The resulting set of datasets examined is as follows, where each dataset alters
only one property in relation to the baseline:

e SG-BASE: A baseline dataset that is a large and homophilic graph with house
ground-truth motifs, which is adapted to form the remaining datasets.

e SG-HETEROPHILIC: A modified version of the baseline dataset with a hetero-
philic graph.

e SG-UNFAIR: A modified version of the baseline dataset with a strongly unfair
ground truth wherein protected node features are negatively correlated with the
node class, and there is a 75% chance node features will be flipped

¢ SG-MOREINFORM: A modified version of the baseline dataset with a high pro-
portion of important to total features, 8:11.

e SG-LESSINFORM: A modified version of the baseline dataset with a low pro-
portion of importance to total features, 4:21.

While these datasets explore a variety of critical properties, the simulator does not
return a sparse node feature dataset or dataset with a high proportion of zero node
features with respect to the total number with known ground truth. As a result, there
are no benchmarking results on how the explainer methods respond to this poten-
tially challenging feature. Real-world datasets, particularly for biological applica-
tions, may have highly sparse features such as single-cell gene expression datasets
[26]. This makes analyzing gene-gene interactions computationally, needed to ease
wet lab analysis, more challenging [25]. We hypothesize that sparse node features
will influence explainer performance, which inspired us to include a second set of
datasets: a baseline dataset at two different levels of sparsity.

To examine the effects of sparsity on BetaExplainer, we needed a dataset with
some ground truth gene-gene interaction graph. Otherwise, it would be unclear
whether the method correctly selects important edges. We chose the SERGIO gene
expression simulator [27] as no ShapeGGen parameters allow us to control for this
dataset explicitly. The SERGIO gene expression simulator is a widely used tool in
the field of gene-gene interaction inference, capable of simulating the gene expres-
sion of a set of single cells using the chemical Langevin equation. This method
allows the simulator to capture how regulator expression changes affect regulated
gene expression, resulting in a gene regulatory network (GRN). Once SERGIO runs
a set of simulations long enough to achieve steady-state, it samples gene expression

4 Fairness measures the similarity of the model results on the data components deemed necessary to the
model results on the original data/graph.

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 477

from the graph to simulate a single-cell dataset. Specifically for our purposes, we
use two cell types or classes, 100 genes per cell, and 1000 cells per cell type. Once
sampled, we applied 25% and 50% random sparsity to the original dataset. This
means we have two datasets with sparsity and known important edges - or the GRN
that governs the cell expression (Fig. 8). Unlike the first set of datasets, these will
both be graph classification problems: given a graph governing gene interactions
and gene expression, a GNN predicts cell type.

However, in the real-world, the full groundtruth GRN may be unknown, sug-
gesting simulating methods of approximating this underlying GRN are needed. We
choose to create a graph based on genes that have a correlation of at least 0.35, indi-
cating that they are often expressed together, for each dataset. Due to limitations
such as sparsity and regulation through intermediary genes, this graph contains a
mix of true and false edges but is unable to capture all true gene-gene interactions
while maintaining a computationally tractable graph. This allows us to approximate
explainer accuracy on what it is given, though all explainers are unable to determine
the importance of unseen edges.

Finally, we applied BetaExplainer to the Texas [28] dataset to examine its poten-
tial on real-world datasets, specifically one that has a heterophilic graph [29]. This
dataset uses nodes to represent websites associated with the Computer Science
Department of a Texas University, divided into five classes denoting website affili-
ation (student, course, project, staff, or faculty) [28]. Edges represent links between
websites, and node features represent the sites through a bag-of-words method [28].

2.3.2 Implementation

All trained GNN models used the Adam optimizer and cross-entropy loss, but model
architecture (Fig. 7) and parameters (Table 3, in supplementary material) vary to
optimize the train and test accuracy for each dataset.

We initialize BetaExplainer with the node features and edge index of a given
dataset, the @ and § parameters needed to initialize the Beta distribution, and the
original model trained to classify outputs on the input data with epochs, learning
rates, @, and f hyperparameters chosen based on the most balanced results across
metrics (Table 4, in supplementary material). Similarly, we chose the parameters
resulting in the best performance for the GNNExplainer and the baselines (Tables 4
and 5, in supplementary material).

2.3.3 Metrics

We judge whether BetaExplainer returned more important edges than GNNEXx-
plainer and SubgraphX through accuracy metrics (specifically accuracy and F1
Scores to determine how well BetaExplainer returns important edges while ignor-
ing unimportant edges) and unfaithfulness (to capture the similarity of model out-
put on edges the explainer deems important to model output on all edges). For the
accuracy metrics, calculation details varied depending on the dataset used. For the
ShapeGGen [16] datasets, we focus on the best-performing subgraph since this was
the method chosen for the simulator [16] and the whole graph for the SERGIO [27]

@ Springer

478 Journal of Statistical Theory and Applications (2025) 24:469-488

datasets for all analysis - qualitative (such as explanation graphs) and quantitative
(the edge mask probability distributions and metrics). Letting P denote precision
and R represent recall, we consider the F1 score which is computed as the following

2PR

P+R ©)
Accuracy was another area in which datasets differ. Given that TP represents the
number of true positives, TN the true negatives, FP the false positives, and FN
the false negatives, we used the traditional accuracy calculation for the SERGIO
datasets:

TP + TN .
TP+ TN + FP+FN’)

We used two calculations for the number of false negatives: the first, containing
all false negatives on the ground-truth elements in the input graph plus the miss-
ing ground-truth elements in the said graph, and the second, with just false nega-
tives on the ground-truth elements for these datasets. We chose this method to cap-
ture explainer limitations as explainers may only analyze given data while ensuring
the resulting metrics make sense. For the remaining datasets, to better mimic the
ShapeGGen simulator [16], we used the Jaccard Index:

TP
TP+ FP+ FN +1e—-9

®)

While the le — 9 term is not strictly part of the Jaccard Index, the simulator incorpo-
rated it to avoid division by zero errors while maintaining rounding-accurate results,
so we chose to include it as well [16]. The final metric calculated is unfaithfulness
[16], or

1 — exp(=KL(f (X, G)|If (X, G)))) ©)

KL represents the KL divergence between the original GNN output given the full
dataset versus the GNN output on the subgraph the explainer deems essential.

We calculated all metrics across ten random seeds, reporting the mean and
standard error and ensuring randomness played less of a role in our results. We
observed BetaExplainer’s edge mask probability distribution of true and false
positives over multiple runs with the same seed to best mimic the simulation
structure and ensure randomness did not affect runs strongly. Visualizing the
best-performing subgraph or graph over these runs for each explainer and the
BetaExplainer edge mask probability distributions for true positives and true
negatives also provided means to evaluate the model. To demonstrate the uncer-
tainty quantification that BetaExplainer provides, we also displayed a graph
weighing each edge based on probability modified through a variation of min-
max scaling (supplementary) to clarify the range of probabilities taken.

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 479
a Accuracy (1) b F1 Score (1) Unfaithfulness (4)
124 = - -
pal s ST
vofur o T
I,’Ex
0.8) 2
g H
% 06 £
Explainer L2 Explainer £ Explainer
= Beta o = Beta = = Beta
3 GNN = [GNN 3 GNN
) SubgraphX SubgraphX Subgraphx
0.2
0.0+
8 8 2§ % 4 9 F § ¢ 8 9 F F ¢
s £ ¢ ¢ € s £ % 9 & $ £ 85 &
g &8 £ 2z 3 g & 2 2z 3 g &8 £ £ 3
£ 3 £ 8 § 2 2 3 § 2 2 g
& 3 ¢ L 3 2 L 38
R 3% % 3 %8
Dataset Dataset Dataset
d ! SG- SG- SG- !
GraphType SG-BASE LETEROPHILIC LESSINFORM MOREINFORM SC-UNFAIR
P) o
Y 4
3 /] '
Ground Truth NIy’ @

BetaExplainer
With
Normalized
Edge
Probabilities

BetaExplainer

GNNExplainer

SubgraphX

I | False Positive | |

Fig.3 We calculate the mean and standard errors of the a Accuracy, b F1 Score, and ¢ unfaithfulness
results and whether explainer differences are significant (ns: 0.05 <p <1, *: 0.01 <p <0.05, **:
0.001 < p £0.01, ***: 0.0001 < p < 0.001, and ****: p < 0.0001). We graph the best subgraphs for the
datasets for each explainer versus the groundtruth d, denoting true positive (blue), false positive (red),
and false negative (pink) edges and weighting BetaExplainer edges by probabilities

3 Results

3.1 BetaExplainer Performs Well on Simulated Datasets With Challenging
Real-World Properties

We show that BetaExplainer achieves a better Jaccard Index, F1 Score, and
unfaithfulness score than GNNExplainer on the five simulated datasets and better

@ Springer

480 Journal of Statistical Theory and Applications (2025) 24:469-488

unfaithfulness than SubgraphX on four of the five datasets from [16], with signif-
icant improvements for many of these comparisons. We used the Mann—Whitney
U test to calculate the p value (Fig. 3 a-c) to test the significance of performance
improvement. Explainers, particularly when faced with challenging properties such
as heterophilic graphs, tend to generate unfaithful explanation graphs [16], sug-
gesting that these improvements are relevant. BetaExplainer minimizes KL diver-
gence between the masked and original GNN outputs, aligning closely with the
unfaithfulness metric. This likely explains the decreased unfaithfulness score for
BetaExplainer on most datasets and justifies the choice of our formulation. While
BetaExplainer does not achieve better unfaithfulness than SubgraphX on SG-
MOREINFORM, this dataset has more informative features than SG-BASELINE.
These features may negate the need for informative priors provided by BetaEx-
plainer, particularly as a hyperparameter sweep on SG-BASE suggests well-chosen
alpha and beta parameters increase accuracy metrics while decreasing unfaithfulness
(Supplementary Fig. 10a-e and h-1). Furthermore, SG-MOREINFORM may not
fully represent the challenges of real-world datasets, which are more likely to grap-
ple with measurement errors.

Next, we comprehensively investigate BetaExplainer’s performance compared
to GNNExplainer and SubgraphX. We visualize the ground-truth sub-graphs and
the explanation output for all the methods in Fig. 3d. We see that BetaExplainer
generally returns more edges as important than GNNExplainer but balances the
precision-recall trade-off well while maintaining a higher true positive rate than
this baseline. SubgraphX returns a similar number of edges as BetaExplainer
but lacks the ranked scores for relevant edges. Since BetaExplainer is a proba-
bilistic model, unlike SubgraphX, we can obtain the probability distribution of
the edge mask scores. Figures. 4a-e plot the empirical cumulative distribution

SG-BASE eCDF b SG-HETEROPHILIC eCDF Cuo SG-UNFAIR eCDF

00 L
040 045 050 055 060 065 070 075
Probability

d

SG-LESSINFORM eCDF

0.40 045 050 055
Probability Probability

Fig.4 We plot the empirical cumulative distribution (¢CDF) of BetaExplainer probabilities for true and
false positives with respect to the groundtruth, noting that the true positives tend to be associated with
higher probabilities than false positives (a, b, c, d, e)

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 481

Accuracy (1) F1 Score (1) Unfaithfulness (1)
a b c
s ns
0.6 L | 0.40 r rm ~r
. —— —— 1 ——
ns 0.35
0.5 —
= - 0.30
> o e "
g 04 S 0.25 ¢
3 Explainer & Explainer 2 Explainer
<03 = Beta T g3 B Beta % B Beta
3 1 GNN 3] GNN 2 1 GNN
o L] =]
0.15
0.2
0.10
0.1
0.05
-
&
0.0 0.00 + 0.99
25% 50% 25% 50% 25% 50%
Dataset Dataset Dataset
d Graph Type SERGIO 25% Sparsity SERGIO 50% Sparsity SERGIO 25% Sparsity SERGIO 50% Sparsity
Ground Truth \V & .

e. - fo— —
BetaExplainer With
Normalized Edge

Probabilities

BetaExplainer

GNNExplainer

Fig.5 We calculate the mean and standard errors of the accuracy a, F1 score b, and unfaithfulness ¢
and the significant differences between explainer results (ns: 0.05 <p <1, *: 0.0l < p <0.05, **:
0.001 < p <£0.01, ***: 0.0001 < p < 0.001, and ****: p < 0.0001). We graph best results per explainer
for datasets (if true positives are returned) d, denoting true positive (blue), false positive (red), and false
negative (pink) edges and weighting BetaExplainer edges by probabilities and the eCDF of the BetaEx-
plainer probabilities for true and false positives with respect to the groundtruth (e, f)

functions (eCDFs) of these probabilities for the true and false positive edges
when compared to the ground truth. On average, we see that the probabilities
assigned by BetaExplainer for true edges are higher than the ones for false edges.
These probabilistic edge scores allow the user to select the most probable edges
for the explanation based on a threshold of their choice. Uncertainty quantifica-
tion is not possible using other existing GNN interpretation methods (includ-
ing SubgraphX), highlighting the need for probabilistic explanation models like
BetaExplainer.

Furthermore, higher average explanation certainty appears to improve perfor-
mance metrics. Higher certainty associated with edges on average is associated
with lower (or better) unfaithfulness over a hyperparameter sweep (Supplemen-
tary Fig. 11a-g). One potential concern is the unfaithfulness and sparsity trade-off:
choosing too many certain edges may affect experimental prioritization. However,
there are some edge masks with average certainty in the 0.5 to 0.6 range that achieve
similar unfaithfulness to the most certain edge masks (Supplementary Fig. 11a-g),
mitigating these concerns. The strong possibility of improvement indicates BetaEx-
plainer will also perform well on other challenging datasets.

Considering that BetaExplainer improves upon GNNExplainer and SubgraphX in
the unfaithfulness dimension, we will test it on an additional graph simulation with
sparse node features. This is relevant because many real-world datasets are sparse,
such as scRNA-seq datasets, due to technical limitations [26].

@ Springer

482 Journal of Statistical Theory and Applications (2025) 24:469-488

3.2 BetaExplainer Performs Well on Graph Datasets With Highly Sparse Node
Features

BetaExplainer achieves similar accuracy as GNNExplainer and SubgraphX on the
sparse SERGIO datasets and significantly better F1 Scores for both 25% and 50%
sparse node feature datasets (Fig. 5a-b). These results again highlight the better
precision-recall trade-off of BetaExplainer than the baseline methods. We expect
overall low scores as the GNN input graph calculated using correlation is sparse,
as is standard in the field [30]. We test this hypothesis by excluding the false neg-
atives representing the true edges absent from the correlation graph. This experi-
ment confirms our assumption: we see a massive improvement in accuracy and
F1 Scores (Supplementary Fig. 9a-b). Furthermore, this calculation maintains
the same pattern as the original — BetaExplainer outperforms GNNExplainer and
SubgraphX for the F1 Score metrics (Supplementary Fig. 9b).

Following the nuance of this dataset described above, the unfaithfulness met-
ric (Fig. 5c) for this task is less reliable than the F1 score metric. The previ-
ous simulation datasets [16] contained all ground truth edges through both the
model training and explanation evaluation. However, using a graph with a differ-
ent structure as input seems to affect GNN training. This skews the unfaithfulness
metric results for the explained graph since important model edges may not be in
the ground truth graph, suggesting a trade-off between accuracy and unfaithful-
ness metrics.

A qualitative analysis of the best-performing graphs for each explainer over
each dataset confirms the primary driver of F1 Scores in Fig. 5d. While GNNEXx-
plainer may have higher precision, it comes at a significant cost to the recall: it
returns only two edges. SubgraphX returned no edges, indicating comparable
accuracy due to accurate negative instances. BetaExplainer may have lower preci-
sion, but its recall is much higher. For real-world testing, researchers will need
fewer false negative gene-gene interaction edges, suggesting in this case, BetaEx-
plainer has a better precision-recall trade-off balance.

Next, we examine the eCDFs of the true and false positive edges for Beta-
Explainer in Fig. Se-f. Most true positives have a probability of 0.5 or greater,
while most false negatives are less than or equal to the 0.5 bound. Users may
prioritize a small set of the most essential edges in a real-world scenario from the
high probabilistic scores obtained by BetaExplainer. One can be confident of this
selection as this set contains few false positives. This property is compelling as
BetaExplainer can approximate the edge mask probabilistic distribution, prior-
itizing the actual important edges.

Finally, BetaExplainer likely performs better than GNNExplainer due to the
ability to capture the underlying distribution of edge importance by choosing the
best @ and f parameters and thus is the better option for sparse datasets. Even
if there is no improvement for non-sparse datasets, indicating either explainer
is efficacious, improving upon challenging datasets is necessary. BetaExplainer
improves upon critical metrics to the baselines across all challenging datasets
tested, making it a helpful explanation method for the community.

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 483

3.3 Example of BetaExplainer’s Real-World Application

BetaExplainer performs well on the heterophilic Texas dataset [29][28], demonstrat-
ing its applicability to real-world datasets. BetaExplainer achieves an unfaithfulness
of 0.5629 on 48.31% of the original edges. While SubgraphX and GNNExplainer
deem a smaller fraction of edges important (0.308% and 33.85%, respectively),
they produce worse unfaithfulness results (1.0 and 0.9988, respectively). BetaEx-
plainer captures a better sparsity-performance trade-off, suggesting BetaExplainer’s
improved performance on the synthetic datasets holds on real-world data.

Next, we turn to qualitative analysis of BetaExplainer on the Texas dataset, to
fully compare it to the baselines (Fig. 6a). BetaExplainer returns a masked graph
that contains more of the large-scale original structures, which likely accounts for
its improved performance (Fig. 6a). Furthermore, BetaExplainer appears to prior-
itize edges between nodes of a similar class or edges connecting these nodes within
a two-hop neighborhood which may also increase model performance (Fig. 6a).
GNNExplainer and SubgraphX do not appear to retain these overall structure to the
same degree, confirming our quantitative analysis (Fig. 6a).

Finally, we graph the cumulative distribution function of BetaExplainer’s edge
mask (Fig. 6b). We are able to generate a set of probabilities for each edge, provid-
ing an edge ranking for analysis. This is particularly important for real-world data-
sets, wherein a large set of potential hypothesis would not be viable for experimental
confirmation.

3.4 Computational Complexity & Scalability

Finally, we examine the runtime and memory usage of BetaExplainer and compare it
to GNNExplainer and SubgraphX. Incorporating variational inference in our method
is bound to increase the runtime per epoch as compared to other methods as our
experimental analysis confirms (Table 1). Using batch input methods for the graph
classification datasets appears to drastically improve this average runtime in the case
of graph datasets, though not enough to outperform SubgraphX or GNNExplainer.
Similarly, the memory required for BetaExplainer is higher than the compari-
son methods (Table 2). The best-performing method is SubgraphX, which lacks
the notion of uncertainty BetaExplainer provides. As a result, the complexity-ben-
efit tradeoff may rule in favor of BetaExplainer. In addition, while this trade-off is

a

b
Texas Graph BetaExplainer SubgraphX GNNExplainer f

e
4

Probability

Fig.6 We graph all edges with a probability of at least 0.5 and specify thickness based on the weighted
probability a. The nodes connected to these edges are denoted in colors associated with the node classes.
We also graph the eCDF denoting the spread of probabilities of the associated edge mask b

@ Springer

484 Journal of Statistical Theory and Applications (2025) 24:469-488

Table 1 The average runtime (in seconds) over 50 epochs was calculated runs, and the average average
runtime per epoch was calculated for BetaExplainer and GNNExplainer. As SubgraphX does not have a
notion of training epochs, the average runtime for SubgraphX is denoted as a *. Lower (better) times are
bolded

Dataset Explainer Full Runtime (s) Average
Epoch Runt-
ime (s)
SG-BASE GNN 2.09 0.0419
SG-BASE SubgraphX 20.1 *
SG-BASE Beta 11.2 2.24e~1
SG-HETEROPHILIC GNN 3.35 0.0669
SG-HETEROPHILIC SubgraphX 0.464 *
SG-HETEROPHILIC Beta 15.4 3.08e~1
SG-LESSINFORM GNN 2.96 0.0593
SG-LESSINFORM SubgraphX 221 *
SG-LESSINFORM Beta 11.4 2.29e-1
SG-MOREINFORM GNN 2.07 0.0414
SG-MOREINFORM SubgraphX 0.605 *
SG-MOREINFORM Beta 14.1 2.82e~1
SG-UNFAIR GNN 2.86 0.0572
SG-UNFAIR SubgraphX 2.71 *
SG-UNFAIR Beta 21.8 4.35e~1
SERGIO 25% Sparsity GNN 0.127 0.00510
SERGIO 25% Sparsity SubgraphX 0.0932 *
SERGIO 25% Sparsity Beta 515 10.3
SERGIO 25% Sparsity With Batching Beta 57.2 1.14
SERGIO 50% Sparsity GNN 3.19e 2 1.27¢ -3
SERGIO 50% Sparsity SubgraphX 0.208 *
SERGIO 50% Sparsity Beta 415 8.3
SERGIO 50% Sparsity With Batching Beta 57.2 1.14

expected, BetaExplainer’s memory usage is still within feasible constraints. As a
result, we feel the added complexity of variational inference is reasonable from an
application perspective.

4 Discussion

BetaExplainer learns a probabilistic importance score for each edge by learning
a Beta distribution. This is achieved by minimizing the KL divergence between
the model output on the masked graph and the original output. By learning an
importance score, users have a notion of uncertainty in edge importance. Further-
more, learning a probability distribution allows users to incorporate priors, which

@ Springer

Journal of Statistical Theory and Applications (2025) 24:469-488 485

Table 2 The average current and

Dataset Explainer Memor Peak Mem-
peak memories were calculated P Y

Post Run ory Usage

over 25 runs for each dgtaset (MB) (MB)

and explainer combination.

Lower (better) memories are SG-BASE GNN 3.5¢=3 0.11

bolded SG-BASE SubgraphX 0.00026 00024
SG-BASE Beta 0.025 0.055
SG-HETEROPHILIC ~ GNN 0.0032 0.11
SG-HETEROPHILIC SubgraphX 0.00026 2.4e -3
SG-HETEROPHILIC Beta 0.026 0.056
SG-LESSINFORM GNN 0.0036 0.11
SG-LESSINFORM SubgraphX 0.00026 24e-3
SG-LESSINFORM Beta 0.029 0.059
SG-MOREINFORM GNN 0.00036 0.11
SG-MOREINFORM SubgraphX 0.00026 24e-3
SG-MOREINFORM Beta 0.028 0.057
SG-UNFAIR GNN 0.0033 0.11
SG-UNFAIR SubgraphX 0.00026 2.4e-3
SG-UNFAIR Beta 0.027 0.057
SERGIO 25% Sparsity GNN 0.012 0.017
SERGIO 25% Sparsity ~ SubgraphX 0.00027 0.0024
SERGIO 25% Sparsity ~ Beta 0.062 2.05
SERGIO 50% Sparsity GNN 0.012 0.018
SERGIO 50% Sparsity ~ SubgraphX 0.000274 0.0024
SERGIO 50% Sparsity ~Beta 0.063 2.05

provides the method with more information to adapt to datasets with challenging
properties.

BetaExplainer achieves similar performance across accuracy and F1 scores
to current state-of-the-art method GNNExplainer [21] and SubgraphX [23] for
associated datasets and particularly achieves significantly better F1 Scores for
the sparse node feature datasets. It also has similar if not better unfaithfulness
results for almost all datasets, which are often significantly better, for the first five
datasets [16]. Finally, BetaExplainer provides a measure of uncertainty, allowing
users to focus on the most certain edges.

BetaExplainer has a few potential areas of improvement. It is sensitive to
the number of GNN convolution layers due to the GNN oversmoothing issue.
Addressing runtime is also a potential area to improve on, as BetaExplainer can
take approximately 8.5 to 58 more seconds than GNNExplainer to run and from
about 9.19 to 57.1 s longer than SubgraphX, and potentially more if batching
is not used for graph datasets (Table 1). Similar improvements can be made for
reducing the memory usage as a future direction (Table 2). Finally, the method
does not directly provide a node explanation. Thus, further extension should add
a node explainer element while decreasing complexity. As BetaExplainer results

@ Springer

486 Journal of Statistical Theory and Applications (2025) 24:469-488

are at minimum comparable to other baselines, it appears both the complexity and
performance tradeoff and the node explanation extension are viable.

The properties of the BetaExplainer model probably explain the improvements
seen across metrics. We use various a and f parameters based on the datasets,
which likely perform best as they well-capture the underlying dataset properties.
Exploration of these best-performing parameters for the dataset ensures a strong
prior on important edges. Furthermore, BetaExplainer likely improves upon
unfaithfulness results by optimizing KL divergence between the original model
output on the full graph and model output on the masked graph.

In addition, results suggest users may apply BetaExplainer to a wide variety
of datasets including an example from the real-word setting. However, we plan to
perform more exploration of real-world applications for the method. Much like
the SERGIO [27] datasets, which represent gene expression data, many real-world
expression datasets have sparse node features due to experimental limitations
[26]. Since computational methods may clarify gene-gene interactions without
expensive laboratory resources, BetaExplainer’s ability to adapt to sparse datasets
is critical [25]. Graph classification models are another area of exploration as this
may prove to be a factor in the SERGIO results as they simulate a graph classi-
fication problem [27]. Follow-up will determine whether sparsity constitutes the
major difference in performance across models. In addition, examining whether
the improved performance holds for real-world heterophilic graph problems such
as protein structure model prediction [31]. Exploration of these real-world data-
sets and other important applications will be critical to understanding BetaEx-
plainer’s potential applications and determining important elements of real-world
graphs.

We anticipate anomaly detection as a particular application focus. Khan et al.
(2024) [32] propose both KL divergence regularization and probabilistic models
[33] for anomaly detection, suggesting that BetaExplainer may also perform well
in this domain. BetaExplainer’s ability to provide prior information through well-
chosen parameters, in particular, may be beneficial in discovering anomalies.

Adding other model loss or architecture components to BetaExplainer may also
prove advantageous. Incorporating Tversky Loss, for instance, into our original loss
term will ensure that the model remains robust on a dataset with few important fea-
tures [34]. BetaExplainer may also benefit Transformer methods by indirect mask-
ing of attention weights through edge masking [15][14]. Masking out these edges
improves self-supervised learning performance by providing guidance towards
the most important graph structures given the prior information provided by Beta-
Explainer [15][14]. This will provide these attention mechanisms [15][14] with
domain-relevant distributional prior information. Thus, these extensions will be of
primary interest for future work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s44199-025-00118-x.

Acknowledgements We are grateful to Ghulam Murtaza for helping us understand challenges with the
SERGIO datasets and for aid in revising, Michal Golanvesky for providing seed resources, and Alexandra

@ Springer

https://doi.org/10.1007/s44199-025-00118-x
https://doi.org/10.1007/s44199-025-00118-x

Journal of Statistical Theory and Applications (2025) 24:469-488 487

Miller for aid in proofreading. This research was conducted using computational resources and services
provided by the Center for Computation and Visualization at Brown University.

Author Contributions W. S. wrote the main manuscript text, prepared all figures, and ran the code to get
the main results. S. P. developed the model. M. W. re-ran all models to ensure reproducibility. R. S. and
L. C. supervised the project and reviewed the manuscript.

Funding This research was also supported in part by a David & Lucile Packard Fellowship for Science
and Engineering awarded to LC. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of any of the funders.

Data Availability Datasets are accessible at the associated GitHub or through simulation code as
described at the GitHub: https://github.com/wsloneker/BetaExplainerDemo.

Code Availability All code is available under the open-source MIT license at https://github.com/wslon
eker/BetaExplainerDemo.

Declarations

Conflict of interest LC is an employee of Microsoft and owns equity in the company. All other authors
have declared that they have no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDeriv-
atives 4.0 International License, which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Su, M.: Graph neural net-
works: A review of methods and applications. Al Open, pages 57-81 (2020)

2. Wu, Z, Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.: A comprehensive survey on graph neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4-24 (2021)

3. Liu, Z., Wan, G., Prakash, B., Lau, M., Jin, W.: A review of graph neural networks in epidemic
modeling. ACM Digital Library, Pages 6577 — 6587 (2024)

4. Ju, W, Yi, S., Wang, Y., Xiao, Z., Mao, Z., Li, H., Gu, Y., Qin, Y., Yin, N., Wang, S., Liu, X., Luo,
X., Yu, P,, Zhang, M.: A survey of graph neural networks in real world: Imbalance, noise, privacy
and ood challenges. arxiv (2024)

5. Zhang, H., Wu, B., Yuan, X, Pan, S., Tong, H., Pei, J.: Trustworthy graph neural networks: Aspects,
methods, and trends. Proc. IEEE 112(2), 97-139 (2024)

6. Przulj, N., Corneil, D., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics
20(18), 3508-3515 (2004)

7. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 701-710 (2014)

8. Xenos, A.: Simplifying complex machine learning by linearly separable network embedding spaces.
arxiv (2024)

9. Zhou, Y., Zheng, H., Hao, S., Li, D., Zhao, J.: Graph neural networks: Taxonomy, advances, and
trends. ACM Trans. Int. Syst. Technol. 13(15), 1-54 (2022)

@ Springer

https://github.com/wsloneker/BetaExplainerDemo
https://github.com/wsloneker/BetaExplainerDemo
https://github.com/wsloneker/BetaExplainerDemo
http://creativecommons.org/licenses/by-nc-nd/4.0/

488

Journal of Statistical Theory and Applications (2025) 24:469-488

10.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Waikhom, L., Patgiri, R.: A survey of graph neural networks in various learning paradigms: meth-
ods, applications, and challenges. Artif. Intell. Rev. 56, 6295-6364 (2023)

Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., Pei, J.: Trustworthy graph neural networks: Aspects,
methods, and trends. IEEE. Proc (2024)

Khan, W., Haroon, M.: A pilot study and survey on methods for anomaly detection in online social
networks. Human-Centric Smart Comput. 316, (2022)

Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: A taxonomic survey. IEEE
(2022)

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really per-
form bad for graph representation? Conference on Neural Information Processing Systems (2021)
Wu, Z., Jain, P., Wright, M.A., Mirhosein, A., Gonzalez, J.E., Stoica, I.: Representing long-range
context for graph neural networks with global attention. Conference on Neural Information Process-
ing Systems (2021)

Agarwal, C., Queen, O., Lakkaraju, H., Zitnik, M.: Evaluating explainability for graph neural net-
works. Sci Data 10(144), (2023)

Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image
classification models and saliency maps. ICLR (2024)

Pope, P., Kolouri, S., Rostami, M., Martin, C., Hoffmann, H.: Explainability methods for graph con-
volutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10772-10781 (2019)

Baldassarre, F., Azizpour, H.: Explainability techniques for graph convolutional networks. Interna-
tional Conference on Machine Learning (ICML) Workshops (2019)

Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. ICML, page 3319-
3328 (2017)

Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: Gnnexplainer: Generating explanations
for graph neural networks. Adv. Neural Inf. Process. Syst. (2019)

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X.: Parameterized explainer for
graph neural network. Advances in Neural Inf. Process. Syst. Pages 19620-19631 (2020)

Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph neural networks via subgraph
explorations. Proceedings of The 38th International Conference on Machine Learning, pages 1241—
12252 (2021)

Vu, M., Thai, M.: Pgm-explainer: Probabilistic graphical model explanations for graph neural net-
works. Advances in Neural Information Processing Systems, pages 12225-12235 (2020)

Bigness, J., Loinaz, X., Patel, S., Larschan, E., Singh, R.: Integrating long-range regulatory interac-
tions to predict gene expression using graph convolutional networks. J. Comput. Biol. 29(5), 409—
422 (2022)

Bouland, G.A., Mahfouz, A., Reinders, M.J.T.: Consequences and opportunities arising due to
sparser single-cell rna-seq datasets. Genome Biol. 24(86), (2023)

Dibaeinia, P., Sinha, S.: Sergio: A single-cell expression simulator guided by gene regulatory net-
works. Sci. Data 11(3), (2020)

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph convolutional net-
works. In International Conference on Learning Representations (2020)

Ye, Y., Ji, S.: Sparse graph attention networks. IEEE Trans. Knowl. Data Eng. 35(1), 905-916
(2023)

Kim, D., Tran, A., Kim, H., Lin, Y., Yang, J., Yang, P.: Gene regulatory network reconstruction:
harnessing the power of single-cell multi-omic data. NPJ Syst. Biolo. Appl. 9(51), (2023)

Zheng, X., Wang, Y., Liu, Y., Li, M., Zhang, M., Jin, D., Yu, P, Pan, S.: Graph neural networks for
graphs with heterophily: A survey. arXiv:2202.0708214(8), (2024)

Khan, W., Ishrat, M., Neyaz Khan, A., Arif, M., Ahamed Shaikh, A., Khubrani, M.M., Alam, S.,
Shuaib, M., John, R.: Detecting anomalies in attributed networks through sparse canonical correla-
tion analysis combined with random masking and padding. IEEE Access 12, 65555-65569 (2024)
Khan, W., Haroon, M.: An efficient framework for anomaly detection in attributed social networks.
Int J Inf Technol. Page 3069-3076 (2022)

Khan, W., Ebrahim, N.: Anogat-sparse-tl: A hybrid framework combining sparsification and graph
attention for anomaly detection in attributed networks using the optimized loss function incorporat-
ing the twersky loss for improved robustness. Knowl-Based Syst 311, 113144 (2025)

Springer

http://arxiv.org/abs/2202.07082

	BetaExplainer: A Probabilistic Method to Explain Graph Neural Networks
	Abstract
	1 Introduction
	2 Methods
	2.1 BetaExplainer Algorithmic Framework
	2.2 Baselines
	2.3 Experimental Setup
	2.3.1 Datasets
	2.3.2 Implementation
	2.3.3 Metrics

	3 Results
	3.1 BetaExplainer Performs Well on Simulated Datasets With Challenging Real-World Properties
	3.2 BetaExplainer Performs Well on Graph Datasets With Highly Sparse Node Features
	3.3 Example of BetaExplainer’s Real-World Application
	3.4 Computational Complexity & Scalability

	4 Discussion
	Acknowledgements
	References

