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Supplementary Text1044

Posterior Distribution for the Global Importance Scores in the GOALS1045

In this subsection, we derive the full joint distribution for the sample means of the GOALS operator to1046

conduct posterior inference on the global importance of features in a nonlinear model. As was done in the1047

main text, consider a data set with N individuals. We have a vector response variable y of length N and1048

an N ⇥ J design matrix X with J denoting the number of features. For consistency, we will demonstrate1049

the properties of GOALS using a weight-space Gaussian process regression model1050

y = f + ", f ⇠ N (0,K), " ⇠ N (0,�2
I) (S1)1051

where f = [f(x1), . . . , f(xN )] is a normally distributed random variable with mean vector 0 and a1052

covariance matrix K defined by some nonlinear kernel function.1053

In the main text, we defined a set of perturbed features X + ⌅
(j), where ⌅

(j) is an N ⇥ J matrix1054

with rows ⇠(j) equal to all zeros except for the j-th element which we set to be a vector of some positive1055

constant ⇠. We then defined a length N vector g
(j) = [f(x1 + ⇠(j)), . . . , f(xN + ⇠(j))] where we showed1056

that the joint distribution for the GOALS operator �(j) = f � g
(j) (conditional on the data) can be1057

written as the following1058
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where, in addition to previous notation, A = K+ �
2
I is the marginal variance of the response vector y;1060

B
(j) is the covariance between f and g

(j) using the original matrix X and the perturbed matrix X+⌅
(j);1061

C
(j) is the variance of g

(j) using the perturbed matrix X + ⌅
(j); and D

(j,l) is the covariance between1062

g
(j) and g

(l) having perturbed the j-th and l-th feature, respectively. Furthermore, we define1063
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Altogether, the above represents a joint conditional distribution from which one can sample estimates of1066

each �(j) and obtain local interpretability. To investigate the global interpretability of each feature, one1067

can use the sample mean across the local explanations for all observations where �̄(j) = 1
|�(j)/N with 11068

being a length N vector of ones. These global interpretability scores have the following joint distribution1069
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Therefore, to simulate from the posterior distribution of the sample means, one simply needs to compute1071

the following closed form equations for the first and second moments1072
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Extension of the GOALS to Probabilistic Neural Networks1076

In this section, we show how the “GlObal And Local Score” (GOALS) operator can be used to determine1077

global and local interpretability in probabilistic neural networks. In contrast to a “standard” neural1078

network, which uses maximum likelihood point-estimates for its parameters, we will assume a model1079

architecture that places a prior distribution over its weights. During training, we will use a learned1080

posterior probability over these weights to compute the posterior predictive distribution. Once again, we1081

consider a general data application where we are given with a response variable y and an N ⇥ J design1082

matrix X with J covariates. For this problem, we assume the following hierarchical network architecture1083

to learn the predicted response in the data1084

y = r
�1(f), f = H(#)w, w ⇠ ⇡ , (S5)1085

where r(•) is a link function (which we will assume to be the identity for regression-based tasks), # is a1086

vector of inner layer weights, and f is a vector of smooth latent values or “functions” that need to be1087

estimated. Here, we use H(#) = h(X#) to denote an N ⇥ L matrix of activations from the penultimate1088

layer (which are fixed given a predetermined activation function h(•), a set of features X, and point1089

estimates for the inner layer weights #), and w ⇠ ⇡ is a L-dimensional vector of weights at the output1090

layer assumed to follow prior distribution ⇡. For simplicity, we omit the bias term in Eq. (S5) that is1091

produced during the training phase. Also note that the structure of the hidden layers in the model above1092

can be of any size or type, provided that we have access to draws of the posterior predictive distribution1093

for the response variables.1094

The structure of Equation (S5) is motivated by the fact that we are most interested in the posterior1095

distribution of the latent variables f . To this end, we follow previous work (Ish-Horowicz et al., 2019)1096

and split the network architecture into three key components: (i) an input layer of the original features1097

X, (ii) hidden layers H(#) where parameters are deterministically computed, and (iii) the outer layer1098

where the parameters and activations are treated as random variables. As the size of datasets in many1099

application areas continues to grow, it has become common to train neural networks with algorithms that1100

are based on variational Bayes and the stochastic optimization of a variational lower bound (Barber and1101

Bishop, 1998; Graves, 2011; Hinton and Van Camp, 1993). Here, the variational Bayes framework has1102

the additional benefit of providing closed-form expressions for the posterior distribution of the weights in1103

the outer layer w and, subsequently, the functions f .1104

We will begin by first specifying a prior ⇡(w) over the weights and replace the intractable true posterior1105

p(w |y) / p(y |w)⇡(w) with an approximating family of distributions q�(w) where � denotes a collection1106

of free parameters. The overall goal of variational inference is to minimize the Kullback-Leibler divergence1107

between the exact and approximate posterior distributions, respectively. This is equivalent to maximizing1108

the so-called evidence lower bound where all parameters can be optimized jointly as follows1109

argmax
�,#

Eq�(w) [log p(y |w,#)]� ⌘KL(q�(w) k⇡(w)). (S6)1110

Depending on the chosen variational family, the gradients of the minimized KL(q�(w) k⇡(w)) may be1111

available in closed-form, while gradients of the log-likelihood log p(y |w,#) are evaluated using Monte1112

Carlo samples and the local reparameterization trick (Kingma et al., 2015). Following this procedure, we1113

obtain an optimal set of parameters for q�(w), with which we can sample posterior draws for the outer1114

layer. For simplicity, we will assume isotropic Gaussians as the family of approximating distributions1115

q�(w) = N (0,V), (S7)1116

where 0 is vector of zeros and V is a diagonal covariance matrix. Using Equations (S5) and (S7), we may1117

derive the implied distribution over the latent function values using the affine transformation1118

f ⇠ N (0,H(#)VH(#)|). (S8)1119
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While the elements of w are independent, dependencies in the input data (via the deterministic hidden1120

activations H(#) = h(X#)) induce a non-diagonal covariance K = H(#)VH(#)| between the elements1121

of the latent function f .1122

Similar to what was shown with Gaussian process regression, to perform variable importance with1123

the GOALS measure, we can define perturbed features X + ⌅
(j), where ⌅

(j) is an N ⇥ J matrix with1124

rows ⇠(j) equal to all zeros except for the j-th element which we set to be a vector of some positive1125

constant ⇠, and we can also define g
(j) = [f(x1 + ⇠(j)), . . . , f(xN + ⇠(j))]. An analogous way to think1126

about variable importance is to consider the expected change in the mean response given a ⇠-unit increase1127

in the corresponding covariate (holding all else constant). This again leads to the natural quantity to1128

understand the importance of each variable by examining �(j) = f � g
(j). Using Eq. (S8), the posterior1129

mean of �(j) to perform local variable importance in neural networks also takes on the general form1130
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h
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�|i

A
�1

y. (S9)1131

There are a two main differences in this formulation when working with neural networks. First, the1132

marginal variance A = K+ �
2
I can be estimated by using �2 ⇡ V[y �H(#)w] which approximates the1133

variance of residual training error in the penultimate layer (e.g., Demetci et al., 2021). Second, we must1134

find the covariance between f and g
(j) using the original matrix X and some perturbed matrix X+⌅

(j).1135

To do so, note that using the perturbed matrix as the input to an already trained neural network (i.e.,1136

meaning model weights have already been estimated and frozen) allows us to directly estimate new hidden1137

neurons H
(j)(#) = h[(X+ ⌅

(j))#]. This implies that the covariance between f and g
(j) can be written1138

as a function of H(#) and H
(j)(#)|, respectively, where B

(j) = H(#)VH
(j)(#)|. Lastly, as we did in the1139

main text, one can take the sample means of the local importance values to get a measurement of global1140

importance.1141

Scalable Computation for GOALS in Linear Regression1142

In this section, we show that the “GlObal And Local Score” (GOALS) operator can also be efficiently1143

computed in a linear regression framework. As in the previous sections, we will assume that we have1144

access to a length N vector response variable y and an N ⇥ J design matrix X with J denoting the1145

number of features. Next, consider a standard linear model1146

y = f + ", f = X�, " ⇠ N (0,�2
I) (S10)1147

where the function to be estimated f is assumed to be a linear combination of features in X and their1148

respective effects denoted by the J-dimensional vector � = (�1, . . . ,�J) additive coefficients, " is a1149

normally distributed error term with mean zero and scaled variance term �
2, and I denotes an N ⇥ N1150

identity matrix. For convenience, we will assume that the outcome variable y has been mean-centered1151

and standardized. The key identity in this section is that we can equivalently represent the regression in1152

Eq. (S10) as a Gaussian process model with a linear gram kernel where the covariance matrix is written1153

as K = XX
|. Once again, we will work with the posterior mean of �(j) of the GOALS measure which1154

again takes on the same general form presented in Eq. (S9). Since we are working within the context of1155

linear regression, the covariance between f and g
(j) simplifies to the following1156

B
(j) = k(X,X+⌅

(j)) = X(X+⌅
(j))| = K+X⌅

(j)|
. (S11)1157

Note that, because ⌅
(j)| is a matrix of all zeros except for the j-th column, we can use Eq. (S11) to1158

simplify the form of Eq. (S9) as the following1159
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where 1 is a length N vector of ones and x•j is the j-th column in the design matrix X. The main1161

summary is twofold. First, the magnitude of the GOALS operator is directly dependent on the value of1162

⇠. Here, computing �(j) with ⇠ = 2 will lead to importance scores that are twice as large as when the1163

operator is computed with ⇠ = 1. The second main takeaway is that the computation of Eq. (S9) only1164

relies on linear operations after an initial pre-computation of the term 1
|
A

�1
y which can be sped up1165

using matrix decompositions.1166
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Supplementary Figures1167

(A) (B)

(C) (D)

Figure S1. Scatterplots assessing how the value of the parameter ⇠ affects the magnitude
of the GOALS operator in simulations. Here, synthetic responses are simulated to have a signal-
to-noise ratio equal to v

2 = 0.6 with only additive effects in panels (A) and (B), and a combination of
additive and pairwise interaction effects in panels (C) and (D). This is controlled by a free parameter
⇢ = {0.5, 1} which was used to determine the proportion of signal that is contributed by additivity.
The response variables simulated in panels (B) and (D) also have the additional complexity of having
population stratification effects. Values of GOALS computed with ⇠ = 1 are given on the x-axis, and
values of GOALS computed with ⇠ = {0.05, 0.25, 0.5, 1.5, 2} are given on the y-axis. Slopes of each line
are used to compare the differences between estimates, and the dotted grey line represents the values at
which estimates from both approaches are the same. The main takeaway is that while the magnitude of
GOALS is affected by ⇠, its relative ranking of features remains the same (hence, the robust performance
in terms of true and false positive rates in Figure 3). All results are based on 100 simulated replicates.



37

0

10

20

30

40

50

60

Chromosome

R
an

do
m

 F
or

es
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

0.0

0.2

0.4

0.6

0.8

1.0

Chromosome

B
A

R
T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

0

50

100

150

200

250

300

Chromosome

G
ra

di
en

t B
oo

st
er

 R
eg

re
ss

io
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

 Tcq11, Nobq3

 Tcq11, Nobq3

 Tcq11, Nobq3

rs13476237

rs13476238

rs6317022
rs4222821
rs3700831
rs3143355 CEL-X_72954447

 Dbts2

rs13484006rs13483716

 Dbts2, Pbft11, Pgonf3

rs13483927

rs13483927

 Dbts2, Pbft11, Pgonf3

rs13476237

 Dbts2

CEL-X_72954447
rs13483716

rs13484003

gnfX.076.619
rs6239325

 Epfq5

CEL-18_46233900

 Obsty4  Bmiq10, Hlb290, Nidln

rs6335028

Dbts2, Bfq7, Bmiq12, Obq6

rs13483765

 Dbts2 Dbts2, Bfq7, Bmiq12, Obq6  Dbts2, Pbft11, Pgonf3
Dbts2,  Bmiq12  Nobq3

rs13476242

rs13476134

rs13476134
CEL-X_9031623
CEL-X_121578417
CEL-X_44311522
CEL-X_91222960
rs13483823
rs13483724
gnfX.113.872

(A)

(B)

(C)

Figure S2. Manhattan plot of variant-level association mapping results for high-density
lipoprotein (HDL) content in the heterogeneous stock of mice data set from the Wellcome
Trust Centre of Human Genetics (Valdar et al., 2006a,b) using competing global variable
importance approaches. Panel (A) depicts the global importance for each SNP plotted against their
genomic positions after running a random forest (RF) with 500 trees (Ishwaran and Lu, 2019). Here,
genetic features are ranked by assessing their relative influence which is computed by taking the average
total decrease in the residual sum of squares after splitting on each variable. As a direct comparison,
we also include results after implementing (B) a gradient boosting machine (GBM) (Friedman, 2001)
with 100 trees and (C) a Bayesian additive regression tree (BART) (Chipman et al., 2010) with 200
trees and 1000 MCMC iterations on the same quantitative trait. In the GBM, global importance is also
determined by computing the relative influence of each SNP; while, in BART, features are ranked by
the average number of times that they are used in decisions for each tree. In this figure, chromosomes
are shown in alternating colors for clarity. The top 10 highest ranked SNPs by each method are labeled
and color coded based on their nearest mapped gene(s) as cited by the Mouse Genome Informatics
database (http://www.informatics.jax.org/) (Bult et al., 2019). These annotated genes are listed in
the legends of each panel. A complete list of the values for all SNPs can be found in Table S2.

http://www.informatics.jax.org/
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Figure S3. Manhattan plot of variant-level association mapping results for body weight in the heterogeneous stock of
mice data set from the Wellcome Trust Centre of Human Genetics (Valdar et al., 2006a,b). Panel (A) depicts the global
GOALS measure (with ⇠ = 1) of quality-control-positive SNPs plotted against their genomic positions after running a Bayesian Gaussian
process (GP) regression on the quantitative trait. As a direct comparison, in panel (B), we also include results after implementing RATE
on the same fitted GP model. In this figure, chromosomes are shown in alternating colors for clarity. The top 10 highest ranked SNPs
by GOALS and RATE, respectively, are labeled and color coded based on their nearest mapped gene(s) as cited by the Mouse Genome
Informatics database (http://www.informatics.jax.org/) (Bult et al., 2019). These annotated genes are listed in the legends of each
panel. A complete list of the GOALS and RATE values for all SNPs can be found in Table S2.

http://www.informatics.jax.org/
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Figure S4. Manhattan plot of variant-level association mapping results for body weight in
the heterogeneous stock of mice data set from the Wellcome Trust Centre of Human Genet-
ics (Valdar et al., 2006a,b) using competing global variable importance approaches. Panel
(A) depicts the global importance for each SNP plotted against their genomic positions after running a
random forest (RF) with 500 trees (Ishwaran and Lu, 2019). Here, genetic features are ranked by assess-
ing their relative influence which is computed by taking the average total decrease in the residual sum of
squares after splitting on each variable. As a direct comparison, we also include results after implementing
(B) a gradient boosting machine (GBM) (Friedman, 2001) with 100 trees and (C) a Bayesian additive
regression tree (BART) (Chipman et al., 2010) with 200 trees and 1000 MCMC iterations on the same
quantitative trait. In the GBM, global importance is also determined by computing the relative influence
of each SNP; while, in BART, features are ranked by the average number of times that they are used in
decisions for each tree. In this figure, chromosomes are shown in alternating colors for clarity. The top 10
highest ranked SNPs by each method are labeled and color coded based on their nearest mapped gene(s)
as cited by the Mouse Genome Informatics database (http://www.informatics.jax.org/) (Bult et al.,
2019). These annotated genes are listed in the legends of each panel. A complete list of the values for all
SNPs can be found in Table S2.

http://www.informatics.jax.org/
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Figure S5. Manhattan plot of variant-level association mapping results for the percentage of CD8+ cells in the hetero-
geneous stock of mice data set from the Wellcome Trust Centre of Human Genetics (Valdar et al., 2006a,b). Panel (A)
depicts the global GOALS measure (with ⇠ = 1) of quality-control-positive SNPs plotted against their genomic positions after running a
Bayesian Gaussian process (GP) regression on the quantitative trait. As a direct comparison, in panel (B), we also include results after
implementing RATE on the same fitted GP model. In this figure, chromosomes are shown in alternating colors for clarity. The top 10
highest ranked SNPs by GOALS and RATE, respectively, are labeled and color coded based on their nearest mapped gene(s) as cited by
the Mouse Genome Informatics database (http://www.informatics.jax.org/) (Bult et al., 2019). These annotated genes are listed in
the legends of each panel. A complete list of the GOALS and RATE values for all SNPs can be found in Table S3.

http://www.informatics.jax.org/
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Figure S6. Manhattan plot of variant-level association mapping results for the percentage
of CD8+ cells in the heterogeneous stock of mice data set from the Wellcome Trust Centre
of Human Genetics (Valdar et al., 2006a,b) using competing global variable importance
approaches. Panel (A) depicts the global importance for each SNP plotted against their genomic
positions after running a random forest (RF) with 500 trees (Ishwaran and Lu, 2019). Here, genetic
features are ranked by assessing their relative influence which is computed by taking the average total
decrease in the residual sum of squares after splitting on each variable. As a direct comparison, we
also include results after implementing (B) a gradient boosting machine (GBM) (Friedman, 2001) with
100 trees and (C) a Bayesian additive regression tree (BART) (Chipman et al., 2010) with 200 trees
and 1000 MCMC iterations on the same quantitative trait. In the GBM, global importance is also
determined by computing the relative influence of each SNP; while, in BART, features are ranked by
the average number of times that they are used in decisions for each tree. In this figure, chromosomes
are shown in alternating colors for clarity. The top 10 highest ranked SNPs by each method are labeled
and color coded based on their nearest mapped gene(s) as cited by the Mouse Genome Informatics
database (http://www.informatics.jax.org/) (Bult et al., 2019). These annotated genes are listed in
the legends of each panel. A complete list of the values for all SNPs can be found in Table S2.
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